This paper proposes a comparison between uni- and multidimesional approaches to the measurement of poverty. Traditional uni-, fuzzy uni- and fuzzy multidimensional indicators are compared by means of a rank correlation analysis. The robustness of the comparison is ensured by a simulation study. Our results stress that unidimensional indicators provide partial information on the poverty condition.

M. Costa (2020). Multidimensional versus unidimensional poverty measurement. London : Pearson.

Multidimensional versus unidimensional poverty measurement

M. Costa
2020

Abstract

This paper proposes a comparison between uni- and multidimesional approaches to the measurement of poverty. Traditional uni-, fuzzy uni- and fuzzy multidimensional indicators are compared by means of a rank correlation analysis. The robustness of the comparison is ensured by a simulation study. Our results stress that unidimensional indicators provide partial information on the poverty condition.
2020
Book of Short Papers SIS 2020
969
974
M. Costa (2020). Multidimensional versus unidimensional poverty measurement. London : Pearson.
M. Costa
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/776703
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact