Micropatterning techniques and substrate engineering are becoming useful tools to investigate several aspects of cell cell interaction biology. In this work, we rationally study how different micropatterning geometries can affect myoblast behavior in the early stage of in vitro myogenesis. Soft hydrogels with physiological elastic modulus (E = 15 kPa) were micropatterned in parallel lanes (100, 300, and 500 mu m width) resulting in different local and global myoblast densities. Proliferation and differentiation into multinucleated myotubes were evaluated for murine and human myoblasts. Wider lanes showed a decrease in murine myoblast proliferation: (69 +/- 8)% in 100 mu m wide lanes compared to (39 +/- 7)% in 500 mu m lanes. Conversely, fusion index increased in wider lanes: from (46 +/- 7)% to (66 +/- 7)% for murine myoblasts, and from (15 +/- 3)% to (36 +/- 2)% for human primary myoblasts, using a patterning width of 100 and 500 mu m, respectively. These results are consistent with both computational modeling data and conditioned medium experiments, which demonstrated that wider lanes favor the accumulation of endogenous secreted factors. Interestingly, human primary myoblast proliferation is not affected by patterning width, which may be because the high serum content of their culture medium overrides the effect of secreted factors. These data highlight the role of micropatterning in shaping the cellular niche through secreted factor accumulation, and are of paramount importance in rationally understanding myogenesis in vitro for the correct design of in vitro skeletal muscle models.

S. ZATTI, A. ZOSO, E. SERENA, C. LUNI, E. CIMETTA, N. ELVASSORE (2012). Micropatterning topology on soft substrates affects myoblasts proliferation and differentiation. LANGMUIR, 28(5), 2718-2726 [10.1021/la204776e].

Micropatterning topology on soft substrates affects myoblasts proliferation and differentiation

C. LUNI;
2012

Abstract

Micropatterning techniques and substrate engineering are becoming useful tools to investigate several aspects of cell cell interaction biology. In this work, we rationally study how different micropatterning geometries can affect myoblast behavior in the early stage of in vitro myogenesis. Soft hydrogels with physiological elastic modulus (E = 15 kPa) were micropatterned in parallel lanes (100, 300, and 500 mu m width) resulting in different local and global myoblast densities. Proliferation and differentiation into multinucleated myotubes were evaluated for murine and human myoblasts. Wider lanes showed a decrease in murine myoblast proliferation: (69 +/- 8)% in 100 mu m wide lanes compared to (39 +/- 7)% in 500 mu m lanes. Conversely, fusion index increased in wider lanes: from (46 +/- 7)% to (66 +/- 7)% for murine myoblasts, and from (15 +/- 3)% to (36 +/- 2)% for human primary myoblasts, using a patterning width of 100 and 500 mu m, respectively. These results are consistent with both computational modeling data and conditioned medium experiments, which demonstrated that wider lanes favor the accumulation of endogenous secreted factors. Interestingly, human primary myoblast proliferation is not affected by patterning width, which may be because the high serum content of their culture medium overrides the effect of secreted factors. These data highlight the role of micropatterning in shaping the cellular niche through secreted factor accumulation, and are of paramount importance in rationally understanding myogenesis in vitro for the correct design of in vitro skeletal muscle models.
2012
S. ZATTI, A. ZOSO, E. SERENA, C. LUNI, E. CIMETTA, N. ELVASSORE (2012). Micropatterning topology on soft substrates affects myoblasts proliferation and differentiation. LANGMUIR, 28(5), 2718-2726 [10.1021/la204776e].
S. ZATTI; A. ZOSO; E. SERENA; C. LUNI; E. CIMETTA; N. ELVASSORE
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/776239
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 56
  • ???jsp.display-item.citation.isi??? 53
social impact