Magma stored beneath volcanoes is sometimes transported out of the magma chambers by means of laterally propagating dikes, which can lead to fissure eruptions if they intersect the Earth's surface. The driving force for lateral dike propagation can be a lateral tectonic stress gradient, the stress gradient due to the topographic loads, the overpressure of the magma chamber, or a combination of those forces. The 2000 dike intrusion at Miyakejima volcano, Izu arc, Japan, propagated laterally for about 30 km and stopped in correspondence of a strike-slip system, sub-perpendicular to the dike plane. Then the dike continued to inflate, without further propagation. Abundant seismicity was produced, including five earthquakes, one of which occurred on the pre-existing fault system close to the tip of the dike, at approximately the time of arrest. It has been proposed that the main cause for the dike arrest was the fault-induced stress. Here we use a boundary element numerical approach to study the interplay between a propagating dike and a pre-stressed strike-slip fault and check the relative role played by dike–fault interaction and topographic loading in arresting the Miyakejima dike. We calibrate the model parameters according to previous estimates of dike opening and fault displacement based on crustal deformation observations. By computing the energy released during the propagation, our model indicates whether the dike will stop at a given location. We find that the stress gradient induced by the topography is needed for an opening distribution along the dike consistent with the observed seismicity, but it cannot explain its arrest at the prescribed location. On the other hand, the interaction of dike with the fault explains the arrest but not the opening distribution. The joint effect of the topographic load and the stress interaction with strike-slip fault is consistent with the observations, provided the pre-existing fault system is pre-loaded with a significant stress, released gradually during the dike–fault interplay. Our results reveal how the mechanical interaction between dikes and faults may affect the propagation of magmatic intrusions in general. This has implications for our understanding of the geometrical arrangement of rift segments and transform faults in Mid Ocean Ridges, and for the interplay between dikes and dike-induced graben systems.

On the mechanisms governing dike arrest: Insight from the 2000 Miyakejima dike injection

Maccaferri, F.;Rivalta, E.;Passarelli, L.;
2016

Abstract

Magma stored beneath volcanoes is sometimes transported out of the magma chambers by means of laterally propagating dikes, which can lead to fissure eruptions if they intersect the Earth's surface. The driving force for lateral dike propagation can be a lateral tectonic stress gradient, the stress gradient due to the topographic loads, the overpressure of the magma chamber, or a combination of those forces. The 2000 dike intrusion at Miyakejima volcano, Izu arc, Japan, propagated laterally for about 30 km and stopped in correspondence of a strike-slip system, sub-perpendicular to the dike plane. Then the dike continued to inflate, without further propagation. Abundant seismicity was produced, including five earthquakes, one of which occurred on the pre-existing fault system close to the tip of the dike, at approximately the time of arrest. It has been proposed that the main cause for the dike arrest was the fault-induced stress. Here we use a boundary element numerical approach to study the interplay between a propagating dike and a pre-stressed strike-slip fault and check the relative role played by dike–fault interaction and topographic loading in arresting the Miyakejima dike. We calibrate the model parameters according to previous estimates of dike opening and fault displacement based on crustal deformation observations. By computing the energy released during the propagation, our model indicates whether the dike will stop at a given location. We find that the stress gradient induced by the topography is needed for an opening distribution along the dike consistent with the observed seismicity, but it cannot explain its arrest at the prescribed location. On the other hand, the interaction of dike with the fault explains the arrest but not the opening distribution. The joint effect of the topographic load and the stress interaction with strike-slip fault is consistent with the observations, provided the pre-existing fault system is pre-loaded with a significant stress, released gradually during the dike–fault interplay. Our results reveal how the mechanical interaction between dikes and faults may affect the propagation of magmatic intrusions in general. This has implications for our understanding of the geometrical arrangement of rift segments and transform faults in Mid Ocean Ridges, and for the interplay between dikes and dike-induced graben systems.
Maccaferri, F.; Rivalta, E.; Passarelli, L.; Aoki, Y.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/775943
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 21
social impact