A promising route for the energetic valorisation of the main by-product of the biodiesel industry is the steam reforming of glycerol, as it can theoretically produce seven moles of H2 for every mole of C3 H8 O3. In the work presented herein, CeO2 –Al2 O3 was used as supporting material for Ir, Pd and Pt catalysts, which were prepared using the incipient wetness impregnation technique and characterized by employing N2 adsorption–desorption, X-Ray Diffraction (XRD), Temperature Programmed Reduction (TPR), Temperature Programmed Desorption (TPD), X-ray Photoelectron Spectroscopy (XPS) and Transmission Electron Microscopy (TEM). The catalytic experiments aimed at identifying the effect of temperature on the total conversion of glycerol, on the conversion of glycerol to gaseous products, the selectivity towards the gaseous products (H2, CO2, CO, CH4) and the determination of the H2 /CO and CO/CO2 molar ratios. The main liquid effluents produced during the reaction were quantified. The results revealed that the Pt/CeAl catalyst was more selective towards H2, which can be related to its increased number of Brønsted acid sites, which improved the hydrogenolysis and dehydrogenation–dehydration of condensable intermediates. The time-on-stream experiments, undertaken at low Water Glycerol Feed Ratios (WGFR), showed gradual deactivation for all catalysts. This is likely due to the dehydration reaction, which leads to the formation of unsaturated hydrocarbon species and eventually to carbon deposition. The weak metal–support interaction shown for the Ir/CeAl catalyst also led to pronounced sintering of the metallic particles.

Charisiou N.D., Siakavelas G.I., Papageridis K.N., Motta D., Dimitratos N., Sebastian V., et al. (2020). The effect of noble metal (M: Ir, Pt, Pd) on M/Ce2 O3-γ-Al2 O3 catalysts for hydrogen production via the steam reforming of glycerol. CATALYSTS, 10(7), 1-25 [10.3390/catal10070790].

The effect of noble metal (M: Ir, Pt, Pd) on M/Ce2 O3-γ-Al2 O3 catalysts for hydrogen production via the steam reforming of glycerol

Dimitratos N.;
2020

Abstract

A promising route for the energetic valorisation of the main by-product of the biodiesel industry is the steam reforming of glycerol, as it can theoretically produce seven moles of H2 for every mole of C3 H8 O3. In the work presented herein, CeO2 –Al2 O3 was used as supporting material for Ir, Pd and Pt catalysts, which were prepared using the incipient wetness impregnation technique and characterized by employing N2 adsorption–desorption, X-Ray Diffraction (XRD), Temperature Programmed Reduction (TPR), Temperature Programmed Desorption (TPD), X-ray Photoelectron Spectroscopy (XPS) and Transmission Electron Microscopy (TEM). The catalytic experiments aimed at identifying the effect of temperature on the total conversion of glycerol, on the conversion of glycerol to gaseous products, the selectivity towards the gaseous products (H2, CO2, CO, CH4) and the determination of the H2 /CO and CO/CO2 molar ratios. The main liquid effluents produced during the reaction were quantified. The results revealed that the Pt/CeAl catalyst was more selective towards H2, which can be related to its increased number of Brønsted acid sites, which improved the hydrogenolysis and dehydrogenation–dehydration of condensable intermediates. The time-on-stream experiments, undertaken at low Water Glycerol Feed Ratios (WGFR), showed gradual deactivation for all catalysts. This is likely due to the dehydration reaction, which leads to the formation of unsaturated hydrocarbon species and eventually to carbon deposition. The weak metal–support interaction shown for the Ir/CeAl catalyst also led to pronounced sintering of the metallic particles.
2020
Charisiou N.D., Siakavelas G.I., Papageridis K.N., Motta D., Dimitratos N., Sebastian V., et al. (2020). The effect of noble metal (M: Ir, Pt, Pd) on M/Ce2 O3-γ-Al2 O3 catalysts for hydrogen production via the steam reforming of glycerol. CATALYSTS, 10(7), 1-25 [10.3390/catal10070790].
Charisiou N.D.; Siakavelas G.I.; Papageridis K.N.; Motta D.; Dimitratos N.; Sebastian V.; Polychronopoulou K.; Goula M.A.
File in questo prodotto:
File Dimensione Formato  
catalysts-10-00790.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 9.28 MB
Formato Adobe PDF
9.28 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/775769
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
social impact