Reversible computing is a paradigm where programs can execute backward as well as in the usual forward direction. Reversible computing is attracting interest due to its applications in areas as different as biochemical modelling, simulation, robotics and debugging, among others. In concurrent systems the main notion of reversible computing is called causal-consistent reversibility, and it allows one to undo an action if and only if its consequences, if any, have already been undone. This paper presents a general and automatic technique to define a causal-consistent reversible extension for given forward models. We support models defined using a reduction semantics in a specific format and consider a causality relation based on resources consumed and produced. The considered format is general enough to fit many formalisms studied in the literature on causal-consistent reversibility, notably Higher-Order π-calculus and Core Erlang, an intermediate language in the Erlang compilation. Reversible extensions of these models in the literature are ad hoc, while we build them using the same general technique. This also allows us to show in a uniform way that a number of relevant properties, causal-consistency in particular, hold in the reversible extensions we build. Our technique also allows us to go beyond the reversible models in the literature: we cover a larger fragment of Core Erlang, including remote error handling based on links, which has never been considered in the reversibility literature.

Lanese I., Medic D. (2020). A general approach to derive uncontrolled reversible semantics. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing [10.4230/LIPIcs.CONCUR.2020.33].

A general approach to derive uncontrolled reversible semantics

Lanese I.;
2020

Abstract

Reversible computing is a paradigm where programs can execute backward as well as in the usual forward direction. Reversible computing is attracting interest due to its applications in areas as different as biochemical modelling, simulation, robotics and debugging, among others. In concurrent systems the main notion of reversible computing is called causal-consistent reversibility, and it allows one to undo an action if and only if its consequences, if any, have already been undone. This paper presents a general and automatic technique to define a causal-consistent reversible extension for given forward models. We support models defined using a reduction semantics in a specific format and consider a causality relation based on resources consumed and produced. The considered format is general enough to fit many formalisms studied in the literature on causal-consistent reversibility, notably Higher-Order π-calculus and Core Erlang, an intermediate language in the Erlang compilation. Reversible extensions of these models in the literature are ad hoc, while we build them using the same general technique. This also allows us to show in a uniform way that a number of relevant properties, causal-consistency in particular, hold in the reversible extensions we build. Our technique also allows us to go beyond the reversible models in the literature: we cover a larger fragment of Core Erlang, including remote error handling based on links, which has never been considered in the reversibility literature.
2020
31st International Conference on Concurrency Theory (CONCUR 2020)
1
24
Lanese I., Medic D. (2020). A general approach to derive uncontrolled reversible semantics. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing [10.4230/LIPIcs.CONCUR.2020.33].
Lanese I.; Medic D.
File in questo prodotto:
File Dimensione Formato  
published.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 709.63 kB
Formato Adobe PDF
709.63 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/774206
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact