The purpose of this work is to analyze dose distribution inside tissues. To do this, we performed some MCNP simulations using the neutron flux obtained from the Kyoto University Reactor. We have tried to analyze the behavior of neutrons in different types of tissues in relation to their depth. We have found that the value of dose from neutron interaction with 10B depends not only on 10B concentration inside the tissues (a higher concentration produces a higher dose), but also on the tissue density. In fact, tissues with a density considerably different from that of water receive a lower dose. Another dose contribution is given by the presence of 14N inside tissues: this dose contribution is lower compared with the previous one; it is influenced both by the tissue density and the percentage of nitrogen inside the tissue. Finally, the delivered dose decreases very quickly after a depth of about 4 cm, which implies that boron neutron capture therapy is not an effective therapy for the deepest tumors. However, there are some factors that can be taken into account to reach the deepest zone.

BNCT: neutron dose evaluation using a Monte Carlo code

MORIGI, MARIA PIA
2009

Abstract

The purpose of this work is to analyze dose distribution inside tissues. To do this, we performed some MCNP simulations using the neutron flux obtained from the Kyoto University Reactor. We have tried to analyze the behavior of neutrons in different types of tissues in relation to their depth. We have found that the value of dose from neutron interaction with 10B depends not only on 10B concentration inside the tissues (a higher concentration produces a higher dose), but also on the tissue density. In fact, tissues with a density considerably different from that of water receive a lower dose. Another dose contribution is given by the presence of 14N inside tissues: this dose contribution is lower compared with the previous one; it is influenced both by the tissue density and the percentage of nitrogen inside the tissue. Finally, the delivered dose decreases very quickly after a depth of about 4 cm, which implies that boron neutron capture therapy is not an effective therapy for the deepest tumors. However, there are some factors that can be taken into account to reach the deepest zone.
Rossi F.; Ono K.; Suzuki M.; Tanaka H.; Morigi M.P.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/77276
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact