The more intelligent systems based on sub-symbolic techniques pervade our everyday lives, the less human can understand them. This is why symbolic approaches are getting more and more attention in the general effort to make AI interpretable, explainable, and trustable. Understanding the current state of the art of AI techniques integrating symbolic and sub-symbolic approaches is then of paramount importance, nowadays—in particular in the XAI perspective. This is why this paper provides an overview of the main symbolic/sub-symbolic integration techniques, focussing in particular on those targeting explainable AI systems.

Roberta Calegari, G.C. (2020). On the integration of symbolic and sub-symbolic techniques for XAI: A survey. INTELLIGENZA ARTIFICIALE, 14(1), 7-32 [10.3233/IA-190036].

On the integration of symbolic and sub-symbolic techniques for XAI: A survey

Roberta Calegari;Giovanni Ciatto;Andrea Omicini
2020

Abstract

The more intelligent systems based on sub-symbolic techniques pervade our everyday lives, the less human can understand them. This is why symbolic approaches are getting more and more attention in the general effort to make AI interpretable, explainable, and trustable. Understanding the current state of the art of AI techniques integrating symbolic and sub-symbolic approaches is then of paramount importance, nowadays—in particular in the XAI perspective. This is why this paper provides an overview of the main symbolic/sub-symbolic integration techniques, focussing in particular on those targeting explainable AI systems.
2020
Roberta Calegari, G.C. (2020). On the integration of symbolic and sub-symbolic techniques for XAI: A survey. INTELLIGENZA ARTIFICIALE, 14(1), 7-32 [10.3233/IA-190036].
Roberta Calegari, Giovanni Ciatto, Andrea Omicini
File in questo prodotto:
File Dimensione Formato  
ia-14-ia190036.pdf

accesso riservato

Tipo: Versione (PDF) editoriale
Licenza: Licenza per accesso riservato
Dimensione 1.3 MB
Formato Adobe PDF
1.3 MB Adobe PDF   Visualizza/Apri   Contatta l'autore
CCO-IA2019.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 5.03 MB
Formato Adobe PDF
5.03 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/772707
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 87
  • ???jsp.display-item.citation.isi??? 53
social impact