Several historical sea level time series from Antarctic tide gauges, available from the Permanent Service for Mean Sea Level, are analysed. Two sea level curves, obtained by averaging data from the Antarctic Peninsula and West Antarctica, for 1958–2014, show trends of (2.0±0.1) and (1.8 ± 0.2) mm yr-1, respectively. By empirical mode decomposition, cyclic and non-cyclic components of sea level change were separated. A periodicity of 4–5 years was confirmed and attributed to the effects of the Antarctic Circumpolar Wave. The non-cyclic components were found to show a ‘levelling off’ of ≈ 1 mm yr-1 since c. 2000, which cannot be attributed to the isostatic response to Holocene ice melting. Using assessed mass balance data from the West Antarctic Ice Sheet and the Antarctic Peninsula, we studied the response to current ice loss in the region and found that the levelling off could be partly explained by accelerated melting during the last approximately two decades. This may represent the first evidence of sea level fingerprints of glacial melting in Antarctica.
GALASSI, G., SPADA, G. (2017). Tide gauge observations in Antarctica (1958–2014) and recent ice loss. ANTARCTIC SCIENCE, 29(4), 1-13 [10.1017/S0954102016000729].
Tide gauge observations in Antarctica (1958–2014) and recent ice loss
GALASSI, GAIA;SPADA, GIORGIO
2017
Abstract
Several historical sea level time series from Antarctic tide gauges, available from the Permanent Service for Mean Sea Level, are analysed. Two sea level curves, obtained by averaging data from the Antarctic Peninsula and West Antarctica, for 1958–2014, show trends of (2.0±0.1) and (1.8 ± 0.2) mm yr-1, respectively. By empirical mode decomposition, cyclic and non-cyclic components of sea level change were separated. A periodicity of 4–5 years was confirmed and attributed to the effects of the Antarctic Circumpolar Wave. The non-cyclic components were found to show a ‘levelling off’ of ≈ 1 mm yr-1 since c. 2000, which cannot be attributed to the isostatic response to Holocene ice melting. Using assessed mass balance data from the West Antarctic Ice Sheet and the Antarctic Peninsula, we studied the response to current ice loss in the region and found that the levelling off could be partly explained by accelerated melting during the last approximately two decades. This may represent the first evidence of sea level fingerprints of glacial melting in Antarctica.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.