We present a new approach based on linear integro-differential operators with logarithmic kernel related to the Hadamard fractional calculus in order to generalize, by a parameter ν ∈ (0, 1], the logarithmic creep law known in rheology as Lomnitz law (obtained for ν=1). We derive the constitutive stress-strain relation of this generalized model in a form that couples memory effects and time-varying viscosity. Then, based on the hereditary theory of linear viscoelasticity, we also derive the corresponding relaxation function by solving numerically a Volterra integral equation of the second kind. So doing we provide a full characterization of the new model both in creep and in relaxation representation, where the slow varying functions of logarithmic type play a fundamental role as required in processes of ultra slow kinetics.

Garra, R., Mainardi, F., SPADA, G. (2017). A generalization of the Lomnitz logarithmic creep law via Hadamard fractional calculus. CHAOS, SOLITONS AND FRACTALS, 102, 333-338 [10.1016/j.chaos.2017.03.032].

A generalization of the Lomnitz logarithmic creep law via Hadamard fractional calculus

SPADA, GIORGIO
2017

Abstract

We present a new approach based on linear integro-differential operators with logarithmic kernel related to the Hadamard fractional calculus in order to generalize, by a parameter ν ∈ (0, 1], the logarithmic creep law known in rheology as Lomnitz law (obtained for ν=1). We derive the constitutive stress-strain relation of this generalized model in a form that couples memory effects and time-varying viscosity. Then, based on the hereditary theory of linear viscoelasticity, we also derive the corresponding relaxation function by solving numerically a Volterra integral equation of the second kind. So doing we provide a full characterization of the new model both in creep and in relaxation representation, where the slow varying functions of logarithmic type play a fundamental role as required in processes of ultra slow kinetics.
2017
Garra, R., Mainardi, F., SPADA, G. (2017). A generalization of the Lomnitz logarithmic creep law via Hadamard fractional calculus. CHAOS, SOLITONS AND FRACTALS, 102, 333-338 [10.1016/j.chaos.2017.03.032].
Garra, Roberto; Mainardi, Francesco; SPADA, GIORGIO
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/771707
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 61
  • ???jsp.display-item.citation.isi??? 57
social impact