We present a new approach based on linear integro-differential operators with logarithmic kernel related to the Hadamard fractional calculus in order to generalize, by a parameter ν ∈ (0, 1], the logarithmic creep law known in rheology as Lomnitz law (obtained for ν=1). We derive the constitutive stress-strain relation of this generalized model in a form that couples memory effects and time-varying viscosity. Then, based on the hereditary theory of linear viscoelasticity, we also derive the corresponding relaxation function by solving numerically a Volterra integral equation of the second kind. So doing we provide a full characterization of the new model both in creep and in relaxation representation, where the slow varying functions of logarithmic type play a fundamental role as required in processes of ultra slow kinetics.
Garra, R., Mainardi, F., SPADA, G. (2017). A generalization of the Lomnitz logarithmic creep law via Hadamard fractional calculus. CHAOS, SOLITONS AND FRACTALS, 102, 333-338 [10.1016/j.chaos.2017.03.032].
A generalization of the Lomnitz logarithmic creep law via Hadamard fractional calculus
SPADA, GIORGIO
2017
Abstract
We present a new approach based on linear integro-differential operators with logarithmic kernel related to the Hadamard fractional calculus in order to generalize, by a parameter ν ∈ (0, 1], the logarithmic creep law known in rheology as Lomnitz law (obtained for ν=1). We derive the constitutive stress-strain relation of this generalized model in a form that couples memory effects and time-varying viscosity. Then, based on the hereditary theory of linear viscoelasticity, we also derive the corresponding relaxation function by solving numerically a Volterra integral equation of the second kind. So doing we provide a full characterization of the new model both in creep and in relaxation representation, where the slow varying functions of logarithmic type play a fundamental role as required in processes of ultra slow kinetics.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.