We study the out-of-equilibrium properties of 1 + 1 dimensional quantum electrodynamics (QED), discretized via the staggered-fermion Schwinger model with an Abelian Zn gauge group. We look at two relevant phenomena: first, we analyze the stability of the Dirac vacuum with respect to particle/antiparticle pair production, both spontaneous and induced by an external electric field; then, we examine the string breaking mechanism. We observe a strong effect of confinement, which acts by suppressing both spontaneous pair production and string breaking into quark/antiquark pairs, indicating that the system dynamics displays a number of out-of-equilibrium features.

Giuseppe Magnifico, Marcello Dalmonte, Paolo Facchi, Saverio Pascazio, Francesco V. Pepe, Elisa Ercolessi (2020). Real Time Dynamics and Confinement in the Zn Schwinger-Weyl lattice model for 1+1 QED. QUANTUM, 4, 1-21 [10.22331/q-2020-06-15-281].

Real Time Dynamics and Confinement in the Zn Schwinger-Weyl lattice model for 1+1 QED

Giuseppe Magnifico;Elisa Ercolessi
2020

Abstract

We study the out-of-equilibrium properties of 1 + 1 dimensional quantum electrodynamics (QED), discretized via the staggered-fermion Schwinger model with an Abelian Zn gauge group. We look at two relevant phenomena: first, we analyze the stability of the Dirac vacuum with respect to particle/antiparticle pair production, both spontaneous and induced by an external electric field; then, we examine the string breaking mechanism. We observe a strong effect of confinement, which acts by suppressing both spontaneous pair production and string breaking into quark/antiquark pairs, indicating that the system dynamics displays a number of out-of-equilibrium features.
2020
Giuseppe Magnifico, Marcello Dalmonte, Paolo Facchi, Saverio Pascazio, Francesco V. Pepe, Elisa Ercolessi (2020). Real Time Dynamics and Confinement in the Zn Schwinger-Weyl lattice model for 1+1 QED. QUANTUM, 4, 1-21 [10.22331/q-2020-06-15-281].
Giuseppe Magnifico; Marcello Dalmonte; Paolo Facchi; Saverio Pascazio; Francesco V. Pepe; Elisa Ercolessi
File in questo prodotto:
File Dimensione Formato  
q-2020-06-15-281 copy.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 6.1 MB
Formato Adobe PDF
6.1 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/771549
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 93
  • ???jsp.display-item.citation.isi??? 95
social impact