In this paper we prove the existence and the multiplicity of radial positive oscillatory solutions for a nonlinear problem governed by the mean curvature operator in the Lorentz-Minkowski space. The problem is set in an N-dimensional ball and is subject to Neumann boundary conditions. The main tool used is the shooting method for ODEs.

Boscaggin A., Colasuonno F., Noris B. (2020). Multiplicity of solutions for the Minkowski-curvature equation via shooting method. University of Bologna, Department of Mathematics.

Multiplicity of solutions for the Minkowski-curvature equation via shooting method

Colasuonno F.;
2020

Abstract

In this paper we prove the existence and the multiplicity of radial positive oscillatory solutions for a nonlinear problem governed by the mean curvature operator in the Lorentz-Minkowski space. The problem is set in an N-dimensional ball and is subject to Neumann boundary conditions. The main tool used is the shooting method for ODEs.
2020
Bruno Pini Mathematical Analysis Seminar
1
17
Boscaggin A., Colasuonno F., Noris B. (2020). Multiplicity of solutions for the Minkowski-curvature equation via shooting method. University of Bologna, Department of Mathematics.
Boscaggin A.; Colasuonno F.; Noris B.
File in questo prodotto:
File Dimensione Formato  
10577-Article Text-35881-1-10-20200327.pdf

accesso aperto

Tipo: Versione (PDF) editoriale / Version Of Record
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 452.61 kB
Formato Adobe PDF
452.61 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/771359
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact