In this paper we prove the existence and the multiplicity of radial positive oscillatory solutions for a nonlinear problem governed by the mean curvature operator in the Lorentz-Minkowski space. The problem is set in an N-dimensional ball and is subject to Neumann boundary conditions. The main tool used is the shooting method for ODEs.
Boscaggin A., Colasuonno F., Noris B. (2020). Multiplicity of solutions for the Minkowski-curvature equation via shooting method. University of Bologna, Department of Mathematics.
Multiplicity of solutions for the Minkowski-curvature equation via shooting method
Colasuonno F.;
2020
Abstract
In this paper we prove the existence and the multiplicity of radial positive oscillatory solutions for a nonlinear problem governed by the mean curvature operator in the Lorentz-Minkowski space. The problem is set in an N-dimensional ball and is subject to Neumann boundary conditions. The main tool used is the shooting method for ODEs.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
10577-Article Text-35881-1-10-20200327.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale / Version Of Record
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
452.61 kB
Formato
Adobe PDF
|
452.61 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


