In this paper we deal with the {it composite plate problem}, namely the following optimization eigenvalue problem $$ inf_{ ho in mathrm{P}} inf_{u in mathcal{W}setminus{0}} rac{int_{Omega}(Delta u)^2}{int_{Omega} ho u^2}, $$ where $mathrm{P}$ is a class of admissible densities, $mathcal{W}= H^{2}_{0}(Omega)$ for Dirichlet boundary conditions and $mathcal W= H^2(Omega) cap H^1_{0}(Omega)$ for Navier boundary conditions. The associated Euler-Lagrange equation is a fourth-order elliptic PDE governed by the biharmonic operator $Delta^2$. In the spirit of cite{CGIKO00}, we study qualitative properties of the optimal pairs $(u, ho)$. In particular, we prove existence and regularity and we find the explicit expression of $ ho$. When $Omega$ is a ball, we can also prove uniqueness of the optimal pair, as well as positivity of $u$ and radial symmetry of both $u$ and $ ho$.

F. Colasuonno, E.V. (2019). Symmetry in the composite plate problem. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 21(2), 1-34 [10.1142/S0219199718500190].

Symmetry in the composite plate problem

F. Colasuonno
;
E. Vecchi
2019

Abstract

In this paper we deal with the {it composite plate problem}, namely the following optimization eigenvalue problem $$ inf_{ ho in mathrm{P}} inf_{u in mathcal{W}setminus{0}} rac{int_{Omega}(Delta u)^2}{int_{Omega} ho u^2}, $$ where $mathrm{P}$ is a class of admissible densities, $mathcal{W}= H^{2}_{0}(Omega)$ for Dirichlet boundary conditions and $mathcal W= H^2(Omega) cap H^1_{0}(Omega)$ for Navier boundary conditions. The associated Euler-Lagrange equation is a fourth-order elliptic PDE governed by the biharmonic operator $Delta^2$. In the spirit of cite{CGIKO00}, we study qualitative properties of the optimal pairs $(u, ho)$. In particular, we prove existence and regularity and we find the explicit expression of $ ho$. When $Omega$ is a ball, we can also prove uniqueness of the optimal pair, as well as positivity of $u$ and radial symmetry of both $u$ and $ ho$.
2019
F. Colasuonno, E.V. (2019). Symmetry in the composite plate problem. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 21(2), 1-34 [10.1142/S0219199718500190].
F. Colasuonno, E. Vecchi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/771351
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact