A typical neuron in visual cortex receives most inputs from other cortical neurons with a roughly similar stimulus preference. Does this arrangement of inputs allow efficient readout of sensory information by the target cortical neuron? We address this issue by using simple modelling of neuronal population activity and information theoretic tools. We find that efficient synaptic information transmission requires that the tuning curve of the afferent neurons is approximately as wide as the spread of stimulus preferences of the afferent neurons reaching the target neuron. By meta analysis of neurophysiological data we found that this is the case for cortico-cortical inputs to neurons in visual cortex. We suggest that the organization of V1 cortico-cortical synaptic inputs allows optimal information transmission.
Montemurro M.A., Panzeri S. (2005). Optimal information decoding from neuronal populations with specific stimulus selectivity. Neural information processing systems foundation.
Optimal information decoding from neuronal populations with specific stimulus selectivity
Montemurro M. A.
Membro del Collaboration Group
;
2005
Abstract
A typical neuron in visual cortex receives most inputs from other cortical neurons with a roughly similar stimulus preference. Does this arrangement of inputs allow efficient readout of sensory information by the target cortical neuron? We address this issue by using simple modelling of neuronal population activity and information theoretic tools. We find that efficient synaptic information transmission requires that the tuning curve of the afferent neurons is approximately as wide as the spread of stimulus preferences of the afferent neurons reaching the target neuron. By meta analysis of neurophysiological data we found that this is the case for cortico-cortical inputs to neurons in visual cortex. We suggest that the organization of V1 cortico-cortical synaptic inputs allows optimal information transmission.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.