Analytic or Gevrey hypoellipticity is proved for a class of sums of squares of vector fields having a symplectic characteristic manifold of dimension 2 and arbitrary (even) codimension. We note that this class contains examples for which the Treves stratification seems to work as well as examples for which the Treves stratification does not identify properly the non symplectic stratum.

Bove A., Mughetti M. (2020). Gevrey regularity for a class of sums of squares of monomial vector fields. ADVANCES IN MATHEMATICS, 373, 1-35 [10.1016/j.aim.2020.107323].

Gevrey regularity for a class of sums of squares of monomial vector fields

Bove A.;Mughetti M.
2020

Abstract

Analytic or Gevrey hypoellipticity is proved for a class of sums of squares of vector fields having a symplectic characteristic manifold of dimension 2 and arbitrary (even) codimension. We note that this class contains examples for which the Treves stratification seems to work as well as examples for which the Treves stratification does not identify properly the non symplectic stratum.
2020
Bove A., Mughetti M. (2020). Gevrey regularity for a class of sums of squares of monomial vector fields. ADVANCES IN MATHEMATICS, 373, 1-35 [10.1016/j.aim.2020.107323].
Bove A.; Mughetti M.
File in questo prodotto:
File Dimensione Formato  
main.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 731.5 kB
Formato Adobe PDF
731.5 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/769478
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact