We present some new results on the joint distribution of an arbitrary subset of the ordered eigenvalues of complex Wishart, double Wishart, and Gaussian hermitian random matrices of finite dimensions, using a tensor pseudo-determinant operator. Specifically, we derive compact expressions for the joint probability distribution function of the eigenvalues and the expectation of functions of the eigenvalues, including joint moments, for the case of both ordered and unordered eigenvalues.

Chiani M., Zanella A. (2020). On the distribution of an arbitrary subset of the eigenvalues for some finite dimensional random matrices. RANDOM MATRICES: THEORY AND APPLICATIONS, 9(1), 1-25 [10.1142/S2010326320400043].

On the distribution of an arbitrary subset of the eigenvalues for some finite dimensional random matrices

Chiani M.;
2020

Abstract

We present some new results on the joint distribution of an arbitrary subset of the ordered eigenvalues of complex Wishart, double Wishart, and Gaussian hermitian random matrices of finite dimensions, using a tensor pseudo-determinant operator. Specifically, we derive compact expressions for the joint probability distribution function of the eigenvalues and the expectation of functions of the eigenvalues, including joint moments, for the case of both ordered and unordered eigenvalues.
2020
Chiani M., Zanella A. (2020). On the distribution of an arbitrary subset of the eigenvalues for some finite dimensional random matrices. RANDOM MATRICES: THEORY AND APPLICATIONS, 9(1), 1-25 [10.1142/S2010326320400043].
Chiani M.; Zanella A.
File in questo prodotto:
File Dimensione Formato  
on the distribution of an arbitrary subset post print.pdf

accesso aperto

Tipo: Postprint
Licenza: Creative commons
Dimensione 697.05 kB
Formato Adobe PDF
697.05 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/769200
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact