Let G be a simple algebraic group and P a parabolic subgroup of G with abelian unipotent radical P^u, and let B be a Borel subgroup of G contained in P. Let p^u be the Lie algebra of P^u and L a Levi factor of P. Then L is a Hermitian symmetric subgroup of G and B acts with finitely many orbits both on p^u and on G/L. In this paper we study the Bruhat order of the B-orbits in p^u and in G/L, proving respectively a conjecture of Panyushev and a conjecture of Richardson and Ryan.

The Bruhat order on Hermitian symmetric varieties and on abelian nilradicals

Gandini, Jacopo;
2020

Abstract

Let G be a simple algebraic group and P a parabolic subgroup of G with abelian unipotent radical P^u, and let B be a Borel subgroup of G contained in P. Let p^u be the Lie algebra of P^u and L a Levi factor of P. Then L is a Hermitian symmetric subgroup of G and B acts with finitely many orbits both on p^u and on G/L. In this paper we study the Bruhat order of the B-orbits in p^u and in G/L, proving respectively a conjecture of Panyushev and a conjecture of Richardson and Ryan.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/766754
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact