We propose an efficient estimation technique for the automatic selection of locally-Adaptive Total Variation regularisation parameters based on an hybrid strategy which combines a local maximum-likelihood approach estimating space-variant image scales with a global discrepancy principle related to noise statistics. We verify the effectiveness of the proposed approach solving some exemplar image reconstruction problems and show its outperformance in comparison to state-of-The-Art parameter estimation strategies, the former weighting locally the fit with the data [4], the latter relying on a bilevel learning paradigm [8, 9].

Calatroni L., Lanza A., Pragliola M., Sgallari F. (2020). Adaptive parameter selection for weighted-TV image reconstruction problems. Institute of Physics Publishing [10.1088/1742-6596/1476/1/012003].

Adaptive parameter selection for weighted-TV image reconstruction problems

Lanza A.;Pragliola M.;Sgallari F.
2020

Abstract

We propose an efficient estimation technique for the automatic selection of locally-Adaptive Total Variation regularisation parameters based on an hybrid strategy which combines a local maximum-likelihood approach estimating space-variant image scales with a global discrepancy principle related to noise statistics. We verify the effectiveness of the proposed approach solving some exemplar image reconstruction problems and show its outperformance in comparison to state-of-The-Art parameter estimation strategies, the former weighting locally the fit with the data [4], the latter relying on a bilevel learning paradigm [8, 9].
2020
Journal of Physics: Conference Series
1
10
Calatroni L., Lanza A., Pragliola M., Sgallari F. (2020). Adaptive parameter selection for weighted-TV image reconstruction problems. Institute of Physics Publishing [10.1088/1742-6596/1476/1/012003].
Calatroni L.; Lanza A.; Pragliola M.; Sgallari F.
File in questo prodotto:
File Dimensione Formato  
Calatroni_2020_J._Phys.__Conf._Ser._1476_012003.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.92 MB
Formato Adobe PDF
1.92 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/766089
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 12
social impact