In this paper we consider a static and regular fluid generating a locally spherically symmetric and time-independent space-time and calculate the leading quantum corrections to the metric to first order in curvature. Starting from a singularity free classical solution of general relativity, we show that singularities can be introduced in the curvature invariants by quantum gravitational corrections calculated using an effective field theory approach to quantum gravity. We identify non-trivial conditions that ensure that curvature invariants remain singularity free to leading order in the curvature expansion of the effective action.

Calmet, X., Casadio, R., Kuipers, F. (2020). Singularities in quantum corrected space-times. PHYSICS LETTERS. SECTION B, 807, 1-7 [10.1016/j.physletb.2020.135605].

Singularities in quantum corrected space-times

Casadio, Roberto;
2020

Abstract

In this paper we consider a static and regular fluid generating a locally spherically symmetric and time-independent space-time and calculate the leading quantum corrections to the metric to first order in curvature. Starting from a singularity free classical solution of general relativity, we show that singularities can be introduced in the curvature invariants by quantum gravitational corrections calculated using an effective field theory approach to quantum gravity. We identify non-trivial conditions that ensure that curvature invariants remain singularity free to leading order in the curvature expansion of the effective action.
2020
Calmet, X., Casadio, R., Kuipers, F. (2020). Singularities in quantum corrected space-times. PHYSICS LETTERS. SECTION B, 807, 1-7 [10.1016/j.physletb.2020.135605].
Calmet, Xavier; Casadio, Roberto; Kuipers, Folkert
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0370269320304081-main.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 267.99 kB
Formato Adobe PDF
267.99 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/765683
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact