Background: Lactobacillus spp. dominating the vaginal microbiota of healthy women contribute to the prevention of urogenital and sexually transmitted infections. Their protective role in the vagina can be mediated by Lactobacillus cells themselves, metabolites or bacterial components, able to interfere with pathogen adhesion and infectivity. Vulvovaginal candidiasis (VVC) is a common genital infection, caused by the overgrowth of opportunistic Candida spp. including C. albicans, C. glabrata, C. krusei and C. tropicalis. Azole antifungal drugs are not always efficient in resolving VVC and preventing recurrent infections, thus alternative anti-Candida agents based on vaginal probiotics have gained more importance. The present work aims to chemically characterize the biosurfactant (BS) isolated from a vaginal Lactobacillus crispatus strain, L. crispatus BC1, and to investigate its safety and antiadhesive/antimicrobial activity against Candida spp., employing in vitro and in vivo assays. Results: BS isolated from vaginal L. crispatus BC1 was characterised as non-homogeneous lipopeptide molecules with a critical micellar concentration value of 2 mg/mL, and good emulsification and mucoadhesive properties. At 1.25 mg/mL, the BS was not cytotoxic and reduced Candida strains' ability to adhere to human cervical epithelial cells, mainly by exclusion mechanism. Moreover, intravaginal (i.va.) inoculation of BS in a murine experimental model was safe and did not perturb vaginal cytology, histology and cultivable vaginal microbiota. In the case of i.va. challenge of mice with C. albicans, BS was able to reduce leukocyte influx. Conclusions: These results indicate that BS from vaginal L. crispatus BC1 is able to interfere with Candida adhesion in vitro and in vivo, and suggest its potential as a preventive agent to reduce mucosal damage occasioned by Candida during VVC.

Biosurfactant from vaginal Lactobacillus crispatus BC1 as a promising agent to interfere with Candida adhesion / De Gregorio P.R.; Parolin C.; Abruzzo A.; Luppi B.; Protti M.; Mercolini L.; Silva J.A.; Giordani B.; Marangoni A.; Nader-Macias M.E.F.; Vitali B.. - In: MICROBIAL CELL FACTORIES. - ISSN 1475-2859. - ELETTRONICO. - 19:(2020), pp. 133.1-133.16. [10.1186/s12934-020-01390-5]

Biosurfactant from vaginal Lactobacillus crispatus BC1 as a promising agent to interfere with Candida adhesion

Parolin C.
;
Abruzzo A.;Luppi B.;Protti M.;Mercolini L.;Giordani B.;Marangoni A.;Vitali B.
2020

Abstract

Background: Lactobacillus spp. dominating the vaginal microbiota of healthy women contribute to the prevention of urogenital and sexually transmitted infections. Their protective role in the vagina can be mediated by Lactobacillus cells themselves, metabolites or bacterial components, able to interfere with pathogen adhesion and infectivity. Vulvovaginal candidiasis (VVC) is a common genital infection, caused by the overgrowth of opportunistic Candida spp. including C. albicans, C. glabrata, C. krusei and C. tropicalis. Azole antifungal drugs are not always efficient in resolving VVC and preventing recurrent infections, thus alternative anti-Candida agents based on vaginal probiotics have gained more importance. The present work aims to chemically characterize the biosurfactant (BS) isolated from a vaginal Lactobacillus crispatus strain, L. crispatus BC1, and to investigate its safety and antiadhesive/antimicrobial activity against Candida spp., employing in vitro and in vivo assays. Results: BS isolated from vaginal L. crispatus BC1 was characterised as non-homogeneous lipopeptide molecules with a critical micellar concentration value of 2 mg/mL, and good emulsification and mucoadhesive properties. At 1.25 mg/mL, the BS was not cytotoxic and reduced Candida strains' ability to adhere to human cervical epithelial cells, mainly by exclusion mechanism. Moreover, intravaginal (i.va.) inoculation of BS in a murine experimental model was safe and did not perturb vaginal cytology, histology and cultivable vaginal microbiota. In the case of i.va. challenge of mice with C. albicans, BS was able to reduce leukocyte influx. Conclusions: These results indicate that BS from vaginal L. crispatus BC1 is able to interfere with Candida adhesion in vitro and in vivo, and suggest its potential as a preventive agent to reduce mucosal damage occasioned by Candida during VVC.
2020
Biosurfactant from vaginal Lactobacillus crispatus BC1 as a promising agent to interfere with Candida adhesion / De Gregorio P.R.; Parolin C.; Abruzzo A.; Luppi B.; Protti M.; Mercolini L.; Silva J.A.; Giordani B.; Marangoni A.; Nader-Macias M.E.F.; Vitali B.. - In: MICROBIAL CELL FACTORIES. - ISSN 1475-2859. - ELETTRONICO. - 19:(2020), pp. 133.1-133.16. [10.1186/s12934-020-01390-5]
De Gregorio P.R.; Parolin C.; Abruzzo A.; Luppi B.; Protti M.; Mercolini L.; Silva J.A.; Giordani B.; Marangoni A.; Nader-Macias M.E.F.; Vitali B.
File in questo prodotto:
File Dimensione Formato  
DeGregorio_et_al_MicrobCellFact_2020_19_133.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.8 MB
Formato Adobe PDF
1.8 MB Adobe PDF Visualizza/Apri
12934_2020_1390_MOESM1_ESM.pdf

accesso aperto

Descrizione: Additional file 1: Fig. S1
Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Universal – Donazione al Pubblico Dominio (CC0 1.0)
Dimensione 68.63 kB
Formato Adobe PDF
68.63 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/764711
Citazioni
  • ???jsp.display-item.citation.pmc??? 30
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 37
social impact