The thermal reactions of [NEt4][Fe(CO)4(AuNHC)] [NHC = IMes ([NEt4][1]) or IPr ([NEt4][2]); IMes = C3N2H2(C6H2Me3)2; IPr = C3N2H2(C6H3iPr2)2], Fe(CO)4(AuNHC)2 [NHC = IMes (3) or IPr (4)], Fe(CO)4(AuIMes)(AuIPr) (5), and Fe(CO)4(AuNHC)(AuPPh3) [NHC = IMes (6) or IPr (7)] were investigated in different solvents [CH2Cl2, CH3CN, dimethylformamide, and dimethyl sulfoxide (dmso)] and at different temperatures (50-160 °C) in an attempt to obtain higher-nuclearity clusters. 1 and 2 completely decomposed in refluxing CH2Cl2, resulting in [Fe2(CO)8(AuNHC)]- [NHC = IMes (10) or IPr (11)]. Traces of [Fe3(CO)10(CCH3)]- (12) were obtained as a side product. Conversely, 6 decomposed in refluxing CH3CN, affording the new cluster [Au3{Fe(CO)4}2(PPh3)2]- (15). The relative stability of the two isomers found in the solid state structure of 15 was computationally investigated. 4 was very stable, and only after prolonged heating above 150 °C in dmso was limited decomposition observed, affording small amounts of [Fe3S(CO)9]2- (9), [HFe(CO)4]- (16), and [Au16S{Fe(CO)4}4(IPr)4]n+ (17). A dicationic nature for 17 was proposed on the basis of density functional theory calculations. All of the other reactions examined led to species that were previously reported. The molecular structures of the new clusters 11, 12, 15, and 17 were determined by single-crystal X-ray diffraction as their [NEt4][11]·1.5toluene, [Au(IMes)2][15]·0.67CH2Cl2, [NEt4][12], and [17][BF4]n·solvent salts, respectively.

Berti B., Bortoluzzi M., Cesari C., Femoni C., Iapalucci M.C., Mazzoni R., et al. (2020). Thermal Growth of Au-Fe Heterometallic Carbonyl Clusters Containing N-Heterocyclic Carbene and Phosphine Ligands. INORGANIC CHEMISTRY, 59(4), 2228-2240 [10.1021/acs.inorgchem.9b02912].

Thermal Growth of Au-Fe Heterometallic Carbonyl Clusters Containing N-Heterocyclic Carbene and Phosphine Ligands

Berti B.;Cesari C.;Femoni C.;Iapalucci M. C.;Mazzoni R.;Vacca F.;Zacchini S.
2020

Abstract

The thermal reactions of [NEt4][Fe(CO)4(AuNHC)] [NHC = IMes ([NEt4][1]) or IPr ([NEt4][2]); IMes = C3N2H2(C6H2Me3)2; IPr = C3N2H2(C6H3iPr2)2], Fe(CO)4(AuNHC)2 [NHC = IMes (3) or IPr (4)], Fe(CO)4(AuIMes)(AuIPr) (5), and Fe(CO)4(AuNHC)(AuPPh3) [NHC = IMes (6) or IPr (7)] were investigated in different solvents [CH2Cl2, CH3CN, dimethylformamide, and dimethyl sulfoxide (dmso)] and at different temperatures (50-160 °C) in an attempt to obtain higher-nuclearity clusters. 1 and 2 completely decomposed in refluxing CH2Cl2, resulting in [Fe2(CO)8(AuNHC)]- [NHC = IMes (10) or IPr (11)]. Traces of [Fe3(CO)10(CCH3)]- (12) were obtained as a side product. Conversely, 6 decomposed in refluxing CH3CN, affording the new cluster [Au3{Fe(CO)4}2(PPh3)2]- (15). The relative stability of the two isomers found in the solid state structure of 15 was computationally investigated. 4 was very stable, and only after prolonged heating above 150 °C in dmso was limited decomposition observed, affording small amounts of [Fe3S(CO)9]2- (9), [HFe(CO)4]- (16), and [Au16S{Fe(CO)4}4(IPr)4]n+ (17). A dicationic nature for 17 was proposed on the basis of density functional theory calculations. All of the other reactions examined led to species that were previously reported. The molecular structures of the new clusters 11, 12, 15, and 17 were determined by single-crystal X-ray diffraction as their [NEt4][11]·1.5toluene, [Au(IMes)2][15]·0.67CH2Cl2, [NEt4][12], and [17][BF4]n·solvent salts, respectively.
2020
Berti B., Bortoluzzi M., Cesari C., Femoni C., Iapalucci M.C., Mazzoni R., et al. (2020). Thermal Growth of Au-Fe Heterometallic Carbonyl Clusters Containing N-Heterocyclic Carbene and Phosphine Ligands. INORGANIC CHEMISTRY, 59(4), 2228-2240 [10.1021/acs.inorgchem.9b02912].
Berti B.; Bortoluzzi M.; Cesari C.; Femoni C.; Iapalucci M.C.; Mazzoni R.; Vacca F.; Zacchini S.
File in questo prodotto:
File Dimensione Formato  
berti-et-al-2020-thermal-growth-of-au-fe-heterometallic-carbonyl-clusters-containing-n-heterocyclic-carbene-and.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 3.12 MB
Formato Adobe PDF
3.12 MB Adobe PDF Visualizza/Apri
Berti_supporting_ic9b02912_si_001.pdf

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 3.16 MB
Formato Adobe PDF
3.16 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/763790
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact