Despite the universal nature of the compressed sensing mechanism, additional information on the class of sparse signals to acquire allows adjustments that yield substantial improvements. In facts, proper exploitation of these priors allows to significantly increase compression for a given reconstruction quality. Since one of the most promising scopes of application of compressed sensing is that of IoT devices subject to extremely low resource constraint, adaptation is especially interesting when it can cope with hardware-related constraint allowing low complexity implementations. We here review and compare many algorithmic adaptation policies that focus either on the encoding part or on the recovery part of compressed sensing. We also review other more hardware-oriented adaptation techniques that are actually able to make the difference when coming to real-world implementations. In all cases, adaptation proves to be a tool that should be mastered in practical applications to unleash the full potential of compressed sensing.

Adapted Compressed Sensing: A Game Worth Playing

Mangia M.;Rovatti R.;
2020

Abstract

Despite the universal nature of the compressed sensing mechanism, additional information on the class of sparse signals to acquire allows adjustments that yield substantial improvements. In facts, proper exploitation of these priors allows to significantly increase compression for a given reconstruction quality. Since one of the most promising scopes of application of compressed sensing is that of IoT devices subject to extremely low resource constraint, adaptation is especially interesting when it can cope with hardware-related constraint allowing low complexity implementations. We here review and compare many algorithmic adaptation policies that focus either on the encoding part or on the recovery part of compressed sensing. We also review other more hardware-oriented adaptation techniques that are actually able to make the difference when coming to real-world implementations. In all cases, adaptation proves to be a tool that should be mastered in practical applications to unleash the full potential of compressed sensing.
Mangia M.; Pareschi F.; Rovatti R.; Setti G.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/763630
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact