Signals on multiple graphs may model IoT scenarios consisting of a local wireless sensor network performing sets of acquisitions that must be sent to a central hub that may be far from the measurement field. Rakeness-based design of compressed sensing is exploited to allow the administration of the tradeoff between local communication and the long-range transmission needed to reach the hub. Extensive Monte Carlo simulations incorporating real world figures in terms of communication consumption show a potential energy saving from 25% to almost 50% with respect to a direct approach not exploiting local communication and rakeness.

Mangia, M., Pareschi, F., Varma, R., Rovatti, R., Kovačević, J., Setti, G. (2018). Rakeness-Based Compressed Sensing of Multiple-Graph Signals for IoT Applications. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS. II, EXPRESS BRIEFS, 65(5), 682-686 [10.1109/TCSII.2018.2821241].

Rakeness-Based Compressed Sensing of Multiple-Graph Signals for IoT Applications

Mangia, Mauro;Rovatti, Riccardo;
2018

Abstract

Signals on multiple graphs may model IoT scenarios consisting of a local wireless sensor network performing sets of acquisitions that must be sent to a central hub that may be far from the measurement field. Rakeness-based design of compressed sensing is exploited to allow the administration of the tradeoff between local communication and the long-range transmission needed to reach the hub. Extensive Monte Carlo simulations incorporating real world figures in terms of communication consumption show a potential energy saving from 25% to almost 50% with respect to a direct approach not exploiting local communication and rakeness.
2018
Mangia, M., Pareschi, F., Varma, R., Rovatti, R., Kovačević, J., Setti, G. (2018). Rakeness-Based Compressed Sensing of Multiple-Graph Signals for IoT Applications. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS. II, EXPRESS BRIEFS, 65(5), 682-686 [10.1109/TCSII.2018.2821241].
Mangia, Mauro; Pareschi, Fabio; Varma, Rohan; Rovatti, Riccardo; Kovačević, Jelena; Setti, Gianluca
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/763550
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact