We prove a quantitative version of the Faber-Krahn inequality for the first eigenvalue of the fractional Dirichlet-Laplacian of order s. This is done by using the so-called Caffarelli-Silvestre extension and adapting to the nonlocal setting a trick by Hansen and Nadirashvili. The relevant stability estimate comes with an explicit constant, which is stable as the fractional order of differentiability goes to 1. (C) 2020 Elsevier Inc. All rights reserved.
Brasco, L., Cinti, E., Vita, S. (2020). A quantitative stability estimate for the fractional Faber-Krahn inequality. JOURNAL OF FUNCTIONAL ANALYSIS, 279(3), 1-49 [10.1016/j.jfa.2020.108560].
A quantitative stability estimate for the fractional Faber-Krahn inequality
Brasco, L;Cinti, E;
2020
Abstract
We prove a quantitative version of the Faber-Krahn inequality for the first eigenvalue of the fractional Dirichlet-Laplacian of order s. This is done by using the so-called Caffarelli-Silvestre extension and adapting to the nonlocal setting a trick by Hansen and Nadirashvili. The relevant stability estimate comes with an explicit constant, which is stable as the fractional order of differentiability goes to 1. (C) 2020 Elsevier Inc. All rights reserved.File | Dimensione | Formato | |
---|---|---|---|
bracinvit_final_rev2.pdf
accesso aperto
Tipo:
Postprint
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
1.39 MB
Formato
Adobe PDF
|
1.39 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.