Parkinson's disease (PD) is the second most prevalent neurodegenerative disease in older individuals. Neurorehabilitation-based interventions such as those improving gait are crucial for a holistic approach and to limit falls. Several studies have recently shown that mechanical plantar foot stimulation is a beneficial intervention for improving gait impairment in PD patients. The objective of this scoping review is to evaluate the beneficial effects of this stimulation on gait parameters, and to analyse protocols of foot stimulation and other effects in non-motor symptoms. Relevant articles were searched in the Medline database using Pubmed and Scopus, using the primary search terms 'foot stimulation' OR 'plantar stimulation' AND 'Parkinson's disease*'. Several protocols have been used for mechanical plantar foot stimulation (ranging from medical devices to textured insoles). The gait parameters that have been shown to be improved are stride length and walking speed. The beneficial effects are achieved after both acute and repeated plantar foot stimulation. Beneficial effects are observed in other organs and systems, such as muscle activation, brain connectivity, cardiovascular control in the central nervous system, and the release of brain-derived neurotrophic factor and cortisol in blood added evidence about this intervention's impact on brain function. Mechanical plantar foot stimulation is a safe and effective add-on treatment able for improving gait impairments in PD patients during the L-dopa off state. Randomized and controlled clinical trials to study its eventual potentiating effect with different pharmacotherapy regimens are warranted.

Brognara, L., Cauli, O. (2020). Mechanical Plantar Foot Stimulation in Parkinson's Disease: A Scoping Review. DISEASES, 8(2), 1-16 [10.3390/diseases8020012].

Mechanical Plantar Foot Stimulation in Parkinson's Disease: A Scoping Review

Brognara, Lorenzo;
2020

Abstract

Parkinson's disease (PD) is the second most prevalent neurodegenerative disease in older individuals. Neurorehabilitation-based interventions such as those improving gait are crucial for a holistic approach and to limit falls. Several studies have recently shown that mechanical plantar foot stimulation is a beneficial intervention for improving gait impairment in PD patients. The objective of this scoping review is to evaluate the beneficial effects of this stimulation on gait parameters, and to analyse protocols of foot stimulation and other effects in non-motor symptoms. Relevant articles were searched in the Medline database using Pubmed and Scopus, using the primary search terms 'foot stimulation' OR 'plantar stimulation' AND 'Parkinson's disease*'. Several protocols have been used for mechanical plantar foot stimulation (ranging from medical devices to textured insoles). The gait parameters that have been shown to be improved are stride length and walking speed. The beneficial effects are achieved after both acute and repeated plantar foot stimulation. Beneficial effects are observed in other organs and systems, such as muscle activation, brain connectivity, cardiovascular control in the central nervous system, and the release of brain-derived neurotrophic factor and cortisol in blood added evidence about this intervention's impact on brain function. Mechanical plantar foot stimulation is a safe and effective add-on treatment able for improving gait impairments in PD patients during the L-dopa off state. Randomized and controlled clinical trials to study its eventual potentiating effect with different pharmacotherapy regimens are warranted.
2020
Brognara, L., Cauli, O. (2020). Mechanical Plantar Foot Stimulation in Parkinson's Disease: A Scoping Review. DISEASES, 8(2), 1-16 [10.3390/diseases8020012].
Brognara, Lorenzo; Cauli, Omar
File in questo prodotto:
File Dimensione Formato  
Mechanical Plantar Foot Stimulation in Parkinson′s Disease.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 263.53 kB
Formato Adobe PDF
263.53 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/761167
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 8
social impact