Machine learning (ML) is an innovative method to analyze large and complex data sets. The aim of this study was to evaluate the use of ML to identify predictors of early postsurgical and long-term outcomes in patients treated for Cushing disease (CD).
Zoli, M., Staartjes, V.E., Guaraldi, F., Friso, F., Rustici, A., Asioli, S., et al. (2020). Machine learning-based prediction of outcomes of the endoscopic endonasal approach in Cushing disease: is the future coming?. NEUROSURGICAL FOCUS, 48(6), 1-10 [10.3171/2020.3.FOCUS2060].
Machine learning-based prediction of outcomes of the endoscopic endonasal approach in Cushing disease: is the future coming?
Zoli, Matteo;Guaraldi, Federica;Friso, Filippo;Rustici, Arianna;Asioli, Sofia;Pasquini, Ernesto;Serra, Carlo;Mazzatenta, Diego
2020
Abstract
Machine learning (ML) is an innovative method to analyze large and complex data sets. The aim of this study was to evaluate the use of ML to identify predictors of early postsurgical and long-term outcomes in patients treated for Cushing disease (CD).File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
[10920684 - Neurosurgical Focus] Machine learning–based prediction of outcomes of the endoscopic endonasal approach in Cushing disease_ is the future coming_.pdf
accesso riservato
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per accesso riservato
Dimensione
1.95 MB
Formato
Adobe PDF
|
1.95 MB | Adobe PDF | Visualizza/Apri Contatta l'autore |
SupplementaryContent1_FOCUS20-60.pdf
accesso riservato
Tipo:
File Supplementare
Licenza:
Licenza per accesso riservato
Dimensione
376.15 kB
Formato
Adobe PDF
|
376.15 kB | Adobe PDF | Visualizza/Apri Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.