Machine learning (ML) is an innovative method to analyze large and complex data sets. The aim of this study was to evaluate the use of ML to identify predictors of early postsurgical and long-term outcomes in patients treated for Cushing disease (CD).

Zoli, M., Staartjes, V.E., Guaraldi, F., Friso, F., Rustici, A., Asioli, S., et al. (2020). Machine learning-based prediction of outcomes of the endoscopic endonasal approach in Cushing disease: is the future coming?. NEUROSURGICAL FOCUS, 48(6), 1-10 [10.3171/2020.3.FOCUS2060].

Machine learning-based prediction of outcomes of the endoscopic endonasal approach in Cushing disease: is the future coming?

Zoli, Matteo;Guaraldi, Federica;Friso, Filippo;Rustici, Arianna;Asioli, Sofia;Pasquini, Ernesto;Serra, Carlo;Mazzatenta, Diego
2020

Abstract

Machine learning (ML) is an innovative method to analyze large and complex data sets. The aim of this study was to evaluate the use of ML to identify predictors of early postsurgical and long-term outcomes in patients treated for Cushing disease (CD).
2020
Zoli, M., Staartjes, V.E., Guaraldi, F., Friso, F., Rustici, A., Asioli, S., et al. (2020). Machine learning-based prediction of outcomes of the endoscopic endonasal approach in Cushing disease: is the future coming?. NEUROSURGICAL FOCUS, 48(6), 1-10 [10.3171/2020.3.FOCUS2060].
Zoli, Matteo; Staartjes, Victor E; Guaraldi, Federica; Friso, Filippo; Rustici, Arianna; Asioli, Sofia; Sollini, Giacomo; Pasquini, Ernesto; Regli, Lu...espandi
File in questo prodotto:
File Dimensione Formato  
[10920684 - Neurosurgical Focus] Machine learning–based prediction of outcomes of the endoscopic endonasal approach in Cushing disease_ is the future coming_.pdf

accesso riservato

Tipo: Versione (PDF) editoriale
Licenza: Licenza per accesso riservato
Dimensione 1.95 MB
Formato Adobe PDF
1.95 MB Adobe PDF   Visualizza/Apri   Contatta l'autore
SupplementaryContent1_FOCUS20-60.pdf

accesso riservato

Tipo: File Supplementare
Licenza: Licenza per accesso riservato
Dimensione 376.15 kB
Formato Adobe PDF
376.15 kB Adobe PDF   Visualizza/Apri   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/760951
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 23
social impact