Let G be an almost simple group over an algebraically closed field k of characteristic zero, let g be its Lie algebra and let B ⊂ G be a Borel subgroup. Then B acts with finitely many orbits on the variety N2 ⊂ g of the nilpotent elements whose height is at most 2. We provide a parametrization of the B-orbits in N2 in terms of subsets of pairwise orthogonal roots, and we provide a complete description of the inclusion order among the B-orbit closures in terms of the Bruhat order on certain involutions in the affine Weyl group of g.

Gandini, J., Möseneder Frajria, P., Papi, P. (2020). Nilpotent orbits of height 2 and involutions in the affine Weyl group. INDAGATIONES MATHEMATICAE, 31(4), 568-594 [10.1016/j.indag.2020.04.006].

Nilpotent orbits of height 2 and involutions in the affine Weyl group

Gandini, Jacopo;
2020

Abstract

Let G be an almost simple group over an algebraically closed field k of characteristic zero, let g be its Lie algebra and let B ⊂ G be a Borel subgroup. Then B acts with finitely many orbits on the variety N2 ⊂ g of the nilpotent elements whose height is at most 2. We provide a parametrization of the B-orbits in N2 in terms of subsets of pairwise orthogonal roots, and we provide a complete description of the inclusion order among the B-orbit closures in terms of the Bruhat order on certain involutions in the affine Weyl group of g.
2020
Gandini, J., Möseneder Frajria, P., Papi, P. (2020). Nilpotent orbits of height 2 and involutions in the affine Weyl group. INDAGATIONES MATHEMATICAE, 31(4), 568-594 [10.1016/j.indag.2020.04.006].
Gandini, Jacopo; Möseneder Frajria, Pierluigi; Papi, Paolo
File in questo prodotto:
File Dimensione Formato  
IRIS GMM 2020.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 530.65 kB
Formato Adobe PDF
530.65 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/759054
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact