The gas and vapor transport into films of Hyflon® Ion H, a short-side-chain perfluorosulfonic acid ionomeric (PFSI) membrane, suitable for use in proton exchange membrane fuel cell (PEMFC), has been studied at various temperatures (35-50-65°C). The permeability and diffusivity values of He, N2 and O2 show an Arrhenius type dependence on temperature in the range inspected. Pure water vapor permeation was studied at 65°C, at low/medium activity values. The determination of water transport parameters has been performed by solving numerically the water mass balance with a variable diffusion coefficient, and accounting for a water immobilization reaction onto the hydrophilic sites of the matrix. The boundary conditions vary in time according to the mass balance on the penetrant volume. The solution allows to represent closely the different experimental permeation behavior in all its stages.

Gas and water vapor permeation in a short-side-chain PFSI membrane

CATALANO, JACOPO;GIACINTI BASCHETTI, MARCO;DE ANGELIS, MARIA GRAZIA;SARTI, GIULIO CESARE;
2009

Abstract

The gas and vapor transport into films of Hyflon® Ion H, a short-side-chain perfluorosulfonic acid ionomeric (PFSI) membrane, suitable for use in proton exchange membrane fuel cell (PEMFC), has been studied at various temperatures (35-50-65°C). The permeability and diffusivity values of He, N2 and O2 show an Arrhenius type dependence on temperature in the range inspected. Pure water vapor permeation was studied at 65°C, at low/medium activity values. The determination of water transport parameters has been performed by solving numerically the water mass balance with a variable diffusion coefficient, and accounting for a water immobilization reaction onto the hydrophilic sites of the matrix. The boundary conditions vary in time according to the mass balance on the penetrant volume. The solution allows to represent closely the different experimental permeation behavior in all its stages.
Jacopo Catalano; Marco Giacinti Baschetti; Maria Grazia De Angelis; Giulio Cesare Sarti; Aldo Sanguineti; Paolo Fossati
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/75430
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 10
social impact