Surface-confined synthesis is a promising approach to build complex molecular nanostructures including macrocycles. However, despite the recent advances in on-surface macrocyclization under ultrahigh vacuum, selective synthesis of monodisperse and multicomponent macrocycles remains a challenge. Here, we report on an on-surface formation of [6 + 6] Schiff-base macrocycles via dynamic covalent chemistry. The macrocycles form two-dimensional crystalline domains on the micrometer scale, enabled by dynamic conversion of open-chain oligomers into well-defined ∼3.0 nm hexagonal macrocycles. We further show that by tailoring the length of the alkyl substituents, it is possible to control which of three possible products - oligomers, macrocycles, or polymers - will form at the surface. In situ scanning tunneling microscopy imaging combined with density functional theory calculations and molecular dynamics simulations unravel the synergistic effect of surface confinement and solvent in leading to preferential on-surface macrocyclization.

Fu C., Miksatko J., Assies L., Vrkoslav V., Orlandi S., Kalbac M., et al. (2020). Surface-Confined Macrocyclization via Dynamic Covalent Chemistry. ACS NANO, 14(3), 2956-2965 [10.1021/acsnano.9b07671].

Surface-Confined Macrocyclization via Dynamic Covalent Chemistry

Orlandi S.
Membro del Collaboration Group
;
Muccioli L.;
2020

Abstract

Surface-confined synthesis is a promising approach to build complex molecular nanostructures including macrocycles. However, despite the recent advances in on-surface macrocyclization under ultrahigh vacuum, selective synthesis of monodisperse and multicomponent macrocycles remains a challenge. Here, we report on an on-surface formation of [6 + 6] Schiff-base macrocycles via dynamic covalent chemistry. The macrocycles form two-dimensional crystalline domains on the micrometer scale, enabled by dynamic conversion of open-chain oligomers into well-defined ∼3.0 nm hexagonal macrocycles. We further show that by tailoring the length of the alkyl substituents, it is possible to control which of three possible products - oligomers, macrocycles, or polymers - will form at the surface. In situ scanning tunneling microscopy imaging combined with density functional theory calculations and molecular dynamics simulations unravel the synergistic effect of surface confinement and solvent in leading to preferential on-surface macrocyclization.
2020
Fu C., Miksatko J., Assies L., Vrkoslav V., Orlandi S., Kalbac M., et al. (2020). Surface-Confined Macrocyclization via Dynamic Covalent Chemistry. ACS NANO, 14(3), 2956-2965 [10.1021/acsnano.9b07671].
Fu C.; Miksatko J.; Assies L.; Vrkoslav V.; Orlandi S.; Kalbac M.; Kovaricek P.; Zeng X.; Zhou B.; Muccioli L.; Perepichka D.F.; Orgiu E.
File in questo prodotto:
File Dimensione Formato  
si_84_macrocycles.pdf

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 6.53 MB
Formato Adobe PDF
6.53 MB Adobe PDF Visualizza/Apri
postprint_macrocycles.pdf

Open Access dal 19/02/2021

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 4.46 MB
Formato Adobe PDF
4.46 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/753616
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact