Many methodologies have been developed in the past for misfire detection purposes based on the analysis of the instantaneous engine speed. The missing combustion is usually detected, thanks to the sudden engine speed decrease that takes place after a misfire event. Misfire detection and, in particular, cylinder isolation are nevertheless still a challenging issue for engines with a high number of cylinders, for engine operating conditions at low load or high engine speed, and for multiple misfire events. When a misfire event takes place, a torsional vibration is excited and shows up in the instantaneous engine speed wave form. If a multiple misfire occurs, this torsional vibration is excited more than once in a very short time interval. The interaction between these successive vibrations can generate false alarms or misdetection, and an increased complexity when dealing with cylinder isolation. This paper presents the development of a powertrain torsional behavior model in order to identify the effects of a misfire event on the instantaneous engine speed signal. The identified wave form has then been used to filter out the torsional vibration effects in order to enlighten the missing combustions even in the case of multiple misfire events. The model response is also used to speed up the setup process for the detection algorithm employed, thus evaluating, before running specific experimental tests on a test bench facility, the values for the threshold and the optimal setup of the procedure. The proposed algorithm is developed in this paper for an SI L4 engine; its application to other engine configurations is possible, as is also discussed in this paper.

F. Ponti (2008). Development of a Torsional Behavior Powertrain Model for Multiple Misfire Detection. JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER, 130, 022803-1-022803-13 [10.1115/1.2770486].

Development of a Torsional Behavior Powertrain Model for Multiple Misfire Detection

PONTI, FABRIZIO
2008

Abstract

Many methodologies have been developed in the past for misfire detection purposes based on the analysis of the instantaneous engine speed. The missing combustion is usually detected, thanks to the sudden engine speed decrease that takes place after a misfire event. Misfire detection and, in particular, cylinder isolation are nevertheless still a challenging issue for engines with a high number of cylinders, for engine operating conditions at low load or high engine speed, and for multiple misfire events. When a misfire event takes place, a torsional vibration is excited and shows up in the instantaneous engine speed wave form. If a multiple misfire occurs, this torsional vibration is excited more than once in a very short time interval. The interaction between these successive vibrations can generate false alarms or misdetection, and an increased complexity when dealing with cylinder isolation. This paper presents the development of a powertrain torsional behavior model in order to identify the effects of a misfire event on the instantaneous engine speed signal. The identified wave form has then been used to filter out the torsional vibration effects in order to enlighten the missing combustions even in the case of multiple misfire events. The model response is also used to speed up the setup process for the detection algorithm employed, thus evaluating, before running specific experimental tests on a test bench facility, the values for the threshold and the optimal setup of the procedure. The proposed algorithm is developed in this paper for an SI L4 engine; its application to other engine configurations is possible, as is also discussed in this paper.
2008
F. Ponti (2008). Development of a Torsional Behavior Powertrain Model for Multiple Misfire Detection. JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER, 130, 022803-1-022803-13 [10.1115/1.2770486].
F. Ponti
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/74737
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 12
social impact