The analysis of the intraday dynamics of covariances among high-frequency returns is challenging due to asynchronous trading and market microstructure noise. Both effects lead to significant data reduction and may severely affect the estimation of the covariances if traditional methods for low-frequency data are employed. We propose to model intraday log-prices through a multivariate local-level model with score-driven covariance matrices and to treat asynchronicity as a missing value problem. The main advantages of this approach are: (i) all available data are used when filtering the covariances, (ii) market microstructure noise is taken into account, (iii) estimation is performed by standard maximum likelihood. Our empirical analysis, performed on 1-second NYSE data, shows that opening hours are dominated by idiosyncratic risk and that a market factor progressively emerges in the second part of the day. The method can be used as a nowcasting tool for high-frequency data, allowing to study the real-time response of covariances to macro-news announcements and to build intraday portfolios with very short optimization horizons.

Buccheri, G., Bormetti, G., Corsi, F., Lillo, F. (2021). A Score-Driven Conditional Correlation Model for Noisy and Asynchronous Data: an Application to High-Frequency Covariance Dynamics. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 39(4), 920-936 [10.1080/07350015.2020.1739530].

A Score-Driven Conditional Correlation Model for Noisy and Asynchronous Data: an Application to High-Frequency Covariance Dynamics

Bormetti, Giacomo;Lillo, Fabrizio
2021

Abstract

The analysis of the intraday dynamics of covariances among high-frequency returns is challenging due to asynchronous trading and market microstructure noise. Both effects lead to significant data reduction and may severely affect the estimation of the covariances if traditional methods for low-frequency data are employed. We propose to model intraday log-prices through a multivariate local-level model with score-driven covariance matrices and to treat asynchronicity as a missing value problem. The main advantages of this approach are: (i) all available data are used when filtering the covariances, (ii) market microstructure noise is taken into account, (iii) estimation is performed by standard maximum likelihood. Our empirical analysis, performed on 1-second NYSE data, shows that opening hours are dominated by idiosyncratic risk and that a market factor progressively emerges in the second part of the day. The method can be used as a nowcasting tool for high-frequency data, allowing to study the real-time response of covariances to macro-news announcements and to build intraday portfolios with very short optimization horizons.
2021
Buccheri, G., Bormetti, G., Corsi, F., Lillo, F. (2021). A Score-Driven Conditional Correlation Model for Noisy and Asynchronous Data: an Application to High-Frequency Covariance Dynamics. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 39(4), 920-936 [10.1080/07350015.2020.1739530].
Buccheri, Giuseppe; Bormetti, Giacomo; Corsi, Fulvio; Lillo, Fabrizio
File in questo prodotto:
File Dimensione Formato  
SSRN-id2912438.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale (CCBYNC)
Dimensione 2.12 MB
Formato Adobe PDF
2.12 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/746692
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 23
social impact