The article presents a study on low-power voltage transformers (LPVTs). Considering their increasing spread among Smart Grids, it is fundamental to assess their accuracy behavior in as realistic conditions as possible. Therefore, this article presents a detailed calibration procedure to test LPVTs’ accuracy when various external influence quantities are simultaneously acting on them. In the calibration procedure, the considered quantities are frequency, air temperature, and external electric field. Afterwards, the designed procedure is applied on three different off-the-shelf LPVTs using a measurement setup developed in a laboratory environment. The presented results (i) confirm the easy applicability of the designed calibration procedure; (ii) highlight the various effects of the influence quantities on the accuracy of different types of LPVTs; (iii) confirm the need to include more realistic tests, like the type-tests presented, into the standards to appreciate a wider set of possible in-field behaviors.
Mingotti A., Peretto L., Tinarelli R. (2020). Calibration procedure to test the effects of multiple influence quantities on low-power voltage transformers. SENSORS, 20(4), 1-23 [10.3390/s20041172].
Calibration procedure to test the effects of multiple influence quantities on low-power voltage transformers
Mingotti A.
;Peretto L.;Tinarelli R.
2020
Abstract
The article presents a study on low-power voltage transformers (LPVTs). Considering their increasing spread among Smart Grids, it is fundamental to assess their accuracy behavior in as realistic conditions as possible. Therefore, this article presents a detailed calibration procedure to test LPVTs’ accuracy when various external influence quantities are simultaneously acting on them. In the calibration procedure, the considered quantities are frequency, air temperature, and external electric field. Afterwards, the designed procedure is applied on three different off-the-shelf LPVTs using a measurement setup developed in a laboratory environment. The presented results (i) confirm the easy applicability of the designed calibration procedure; (ii) highlight the various effects of the influence quantities on the accuracy of different types of LPVTs; (iii) confirm the need to include more realistic tests, like the type-tests presented, into the standards to appreciate a wider set of possible in-field behaviors.File | Dimensione | Formato | |
---|---|---|---|
sensors-20-01172-v2.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Creative commons
Dimensione
5.08 MB
Formato
Adobe PDF
|
5.08 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.