This paper presents the design of an ultra-low energy, rakeness-based compressed sensing (CS) system that utilizes time-mode (TM) signal processing (TMSP). To realize TM CS operation, the presented implementation makes use of monostable multivibrator based analog-to-time converters, fixed-width pulse generators, basic digital gates and an asynchronous time-to-digital converter. The TM CS system was designed in a standard 0.18 µm IC process and operates from a supply voltage of 0.6V. The system is designed to accommodate data from 128 individual sensors and outputs 9-bit digital words with an average reconstruction SNR of 35.31 dB, a compression ratio of 3.2, with an energy dissipation per channel per measurement vector of 0.621 pJ at a rate of 2.23 k measurement vectors per second.

Akgun O.C., Mangia M., Pareschi F., Rovatti R., Setti G., Serdijn W.A. (2019). An energy-efficient multi-sensor compressed sensing system employing time-mode signal processing techniques. Institute of Electrical and Electronics Engineers Inc. [10.1109/ISCAS.2019.8702667].

An energy-efficient multi-sensor compressed sensing system employing time-mode signal processing techniques

Mangia M.;Rovatti R.;
2019

Abstract

This paper presents the design of an ultra-low energy, rakeness-based compressed sensing (CS) system that utilizes time-mode (TM) signal processing (TMSP). To realize TM CS operation, the presented implementation makes use of monostable multivibrator based analog-to-time converters, fixed-width pulse generators, basic digital gates and an asynchronous time-to-digital converter. The TM CS system was designed in a standard 0.18 µm IC process and operates from a supply voltage of 0.6V. The system is designed to accommodate data from 128 individual sensors and outputs 9-bit digital words with an average reconstruction SNR of 35.31 dB, a compression ratio of 3.2, with an energy dissipation per channel per measurement vector of 0.621 pJ at a rate of 2.23 k measurement vectors per second.
2019
Proceedings - IEEE International Symposium on Circuits and Systems
1
5
Akgun O.C., Mangia M., Pareschi F., Rovatti R., Setti G., Serdijn W.A. (2019). An energy-efficient multi-sensor compressed sensing system employing time-mode signal processing techniques. Institute of Electrical and Electronics Engineers Inc. [10.1109/ISCAS.2019.8702667].
Akgun O.C.; Mangia M.; Pareschi F.; Rovatti R.; Setti G.; Serdijn W.A.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/744489
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 0
social impact