The burst pressure of steel reinforced flexible pipe (SRFP) considering plasticity is investigated through experimental, theoretical and numerical methods. The results obtained from the aforementioned methods are in good agreement with each other, which illustrates the accuracy and reliability of the proposed theoretical and numerical models. The mechanical responses of PE layers and the steel strips are studied in detail, and the rationality of the strain uniformity assumption for the steel strip's cross section in the theoretical model is confirmed from its von Mises stress variation along the width at different points in FEM. Some influential parameters of SRFP on the burst pressure are also investigated in order to guide its cross-section design. The theoretical model and the FEM proposed in this paper can not only give an estimation to the safety and reliability of the pipe when it is subjected to internal pressure, but can also provide some reference for improving and optimizing its cross-section design.

Burst pressure of steel reinforced flexible pipe

Fantuzzi N.;
2020

Abstract

The burst pressure of steel reinforced flexible pipe (SRFP) considering plasticity is investigated through experimental, theoretical and numerical methods. The results obtained from the aforementioned methods are in good agreement with each other, which illustrates the accuracy and reliability of the proposed theoretical and numerical models. The mechanical responses of PE layers and the steel strips are studied in detail, and the rationality of the strain uniformity assumption for the steel strip's cross section in the theoretical model is confirmed from its von Mises stress variation along the width at different points in FEM. Some influential parameters of SRFP on the burst pressure are also investigated in order to guide its cross-section design. The theoretical model and the FEM proposed in this paper can not only give an estimation to the safety and reliability of the pipe when it is subjected to internal pressure, but can also provide some reference for improving and optimizing its cross-section design.
2020
Gao L.; Liu T.; Shao Q.; Fantuzzi N.; Chen W.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/743082
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 26
social impact