The abundance of data produced daily from large variety of sources has boosted the need of novel approaches on causal inference analysis from observational data. Observational data often contain noisy or missing entries. Moreover, causal inference studies may require unobserved high-level information which needs to be inferred from other observed attributes. In such cases, inaccuracies of the applied inference methods will result in noisy outputs. In this study, we propose a novel approach for causal inference when one or more key variables are noisy. Our method utilizes the knowledge about the uncertainty of the real values of key variables in order to reduce the bias induced by noisy measurements. We evaluate our approach in comparison with existing methods both on simulated and real scenarios and we demonstrate that our method reduces the bias and avoids false causal inference conclusions in most cases.

Tsapeli, F.a.T. (2017). Probabilistic Matching: Causal Inference under Measurement Errors. IEEE.

Probabilistic Matching: Causal Inference under Measurement Errors

Musolesi, M
2017

Abstract

The abundance of data produced daily from large variety of sources has boosted the need of novel approaches on causal inference analysis from observational data. Observational data often contain noisy or missing entries. Moreover, causal inference studies may require unobserved high-level information which needs to be inferred from other observed attributes. In such cases, inaccuracies of the applied inference methods will result in noisy outputs. In this study, we propose a novel approach for causal inference when one or more key variables are noisy. Our method utilizes the knowledge about the uncertainty of the real values of key variables in order to reduce the bias induced by noisy measurements. We evaluate our approach in comparison with existing methods both on simulated and real scenarios and we demonstrate that our method reduces the bias and avoids false causal inference conclusions in most cases.
2017
2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN)
278
285
Tsapeli, F.a.T. (2017). Probabilistic Matching: Causal Inference under Measurement Errors. IEEE.
Tsapeli, F and Tino, P and Musolesi, M
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/742161
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact