The Euclidean ball have the following harmonic characterization, via Gauss-mean value property: Let D be an open set with finite Lebesgue measure and let x(0) be a point of D. If u(x(0)) = 1/|D| int_{D} u(y)dy for every nonnegative harmonic function u in D, then D is a Euclidean ball centered at x(0). On the other hand, on every sufficiently smooth domain D and for every point x(0) in D there exist Radon measures mu such that u(x(0)) = int_{D} u(y)d mu(y)for every nonnegative harmonic function u in D. In this paper we give sufficient conditions so that this last mean value property characterizes the domain D.

ON THE HARMONIC CHARACTERIZATION OF DOMAINS VIA MEAN VALUE FORMULAS

Cupini, G;Lanconelli, E
2020

Abstract

The Euclidean ball have the following harmonic characterization, via Gauss-mean value property: Let D be an open set with finite Lebesgue measure and let x(0) be a point of D. If u(x(0)) = 1/|D| int_{D} u(y)dy for every nonnegative harmonic function u in D, then D is a Euclidean ball centered at x(0). On the other hand, on every sufficiently smooth domain D and for every point x(0) in D there exist Radon measures mu such that u(x(0)) = int_{D} u(y)d mu(y)for every nonnegative harmonic function u in D. In this paper we give sufficient conditions so that this last mean value property characterizes the domain D.
Cupini, G; Lanconelli, E
File in questo prodotto:
File Dimensione Formato  
1969-Article Text-5953-1-10-20191224.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 171.81 kB
Formato Adobe PDF
171.81 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/739283
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 1
social impact