The Euclidean ball have the following harmonic characterization, via Gauss-mean value property: Let D be an open set with finite Lebesgue measure and let x(0) be a point of D. If u(x(0)) = 1/|D| int_{D} u(y)dy for every nonnegative harmonic function u in D, then D is a Euclidean ball centered at x(0). On the other hand, on every sufficiently smooth domain D and for every point x(0) in D there exist Radon measures mu such that u(x(0)) = int_{D} u(y)d mu(y)for every nonnegative harmonic function u in D. In this paper we give sufficient conditions so that this last mean value property characterizes the domain D.
Cupini, G., Lanconelli, E. (2020). ON THE HARMONIC CHARACTERIZATION OF DOMAINS VIA MEAN VALUE FORMULAS. LE MATEMATICHE, 75(1), 331-352 [10.4418/2020.75.1.15].
ON THE HARMONIC CHARACTERIZATION OF DOMAINS VIA MEAN VALUE FORMULAS
Cupini, G;Lanconelli, E
2020
Abstract
The Euclidean ball have the following harmonic characterization, via Gauss-mean value property: Let D be an open set with finite Lebesgue measure and let x(0) be a point of D. If u(x(0)) = 1/|D| int_{D} u(y)dy for every nonnegative harmonic function u in D, then D is a Euclidean ball centered at x(0). On the other hand, on every sufficiently smooth domain D and for every point x(0) in D there exist Radon measures mu such that u(x(0)) = int_{D} u(y)d mu(y)for every nonnegative harmonic function u in D. In this paper we give sufficient conditions so that this last mean value property characterizes the domain D.File | Dimensione | Formato | |
---|---|---|---|
1969-Article Text-5953-1-10-20191224.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
171.81 kB
Formato
Adobe PDF
|
171.81 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.