We study a diophantine property for translation surfaces, defined in terms of saddle connections and inspired by classical Khinchin condition.We prove that the same dichotomy holds as in Khinchin theorem, then we deduce a sharp estimate on how fast the typical Teichmüller geodesic wanders towards infinity in the moduli space of translation surfaces. Finally we prove some stronger result in genus one.

Marchese L. (2012). Khinchin type condition for translation surfaces and asymptotic laws for the Teichmüller flow. BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE, 140(4), 485-532.

Khinchin type condition for translation surfaces and asymptotic laws for the Teichmüller flow

Marchese L.
2012

Abstract

We study a diophantine property for translation surfaces, defined in terms of saddle connections and inspired by classical Khinchin condition.We prove that the same dichotomy holds as in Khinchin theorem, then we deduce a sharp estimate on how fast the typical Teichmüller geodesic wanders towards infinity in the moduli space of translation surfaces. Finally we prove some stronger result in genus one.
2012
Marchese L. (2012). Khinchin type condition for translation surfaces and asymptotic laws for the Teichmüller flow. BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE, 140(4), 485-532.
Marchese L.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/739210
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact