We define a Diophantine condition for interval-exchange transformations. When the number of intervals is two, that is, for rotations on the circle, our condition coincides with the classical Khinchin condition. We prove for interval-exchange transformations the same dichotomy as in the Khinchin Theorem. We also develop several results relating the Rauzy-Veech algorithm with homogeneous approximations for interval-exchange transformations. © 2011 AIMSciences.

Marchese L. (2011). The khinchin theorem for interval-exchange transformations. JOURNAL OF MODERN DYNAMICS, 5(1), 123-183 [10.3934/jmd.2011.5.123].

The khinchin theorem for interval-exchange transformations

Marchese L.
2011

Abstract

We define a Diophantine condition for interval-exchange transformations. When the number of intervals is two, that is, for rotations on the circle, our condition coincides with the classical Khinchin condition. We prove for interval-exchange transformations the same dichotomy as in the Khinchin Theorem. We also develop several results relating the Rauzy-Veech algorithm with homogeneous approximations for interval-exchange transformations. © 2011 AIMSciences.
2011
Marchese L. (2011). The khinchin theorem for interval-exchange transformations. JOURNAL OF MODERN DYNAMICS, 5(1), 123-183 [10.3934/jmd.2011.5.123].
Marchese L.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/739204
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact