We introduce GFrames, a novel local reference frame (LRF) construction for 3D meshes and point clouds. GFrames are based on the computation of the intrinsic gradient of a scalar field defined on top of the input shape. The resulting tangent vector field defines a repeatable tangent direction of the local frame at each point; importantly, it directly inherits the properties and invariance classes of the underlying scalar function, making it remarkably robust under strong sampling artifacts, vertex noise, as well as non-rigid deformations. Existing local descriptors can directly benefit from our repeatable frames, as we showcase in a selection of 3D vision and shape analysis applications where we demonstrate state-of-the-art performance in a variety of challenging settings.

S. Melzi, R. Spezialetti, F. Tombari, M. M. Bronstein, L. Di Stefano, E. Rodolà (2019). Gframes: Gradient-based local reference frame for 3D shape matching. IEEE Computer Society [10.1109/CVPR.2019.00476].

Gframes: Gradient-based local reference frame for 3D shape matching

R. Spezialetti;L. Di Stefano;
2019

Abstract

We introduce GFrames, a novel local reference frame (LRF) construction for 3D meshes and point clouds. GFrames are based on the computation of the intrinsic gradient of a scalar field defined on top of the input shape. The resulting tangent vector field defines a repeatable tangent direction of the local frame at each point; importantly, it directly inherits the properties and invariance classes of the underlying scalar function, making it remarkably robust under strong sampling artifacts, vertex noise, as well as non-rigid deformations. Existing local descriptors can directly benefit from our repeatable frames, as we showcase in a selection of 3D vision and shape analysis applications where we demonstrate state-of-the-art performance in a variety of challenging settings.
2019
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
4624
4633
S. Melzi, R. Spezialetti, F. Tombari, M. M. Bronstein, L. Di Stefano, E. Rodolà (2019). Gframes: Gradient-based local reference frame for 3D shape matching. IEEE Computer Society [10.1109/CVPR.2019.00476].
S. Melzi; R. Spezialetti; F. Tombari; M. M. Bronstein; L. Di Stefano; E. Rodolà
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/737542
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 12
social impact