In this article we propose wild bootstrap implementations of the local generalized least squares (GLS) de-trended M and ADF unit root tests of Stock (1999), Ng and Perron (2001), and Elliott et al. (1996), respectively. The bootstrap statistics are shown to replicate the first order asymptotic distributions of the original statistics, while numerical evidence suggests that the bootstrap tests perform well in small samples. A recolored version of our bootstrap is also proposed which can further improve upon the finite sample size properties of the procedure when the shocks are serially correlated, in particular ameliorating the significant under-size seen in the M tests against processes with autoregressive or moving average roots close to −1. The wild bootstrap is used because it has the desirable property of preserving in the resampled data the pattern of heteroskedasticity present in the original shocks, thereby allowing for cases where the series under test is driven by martingale difference innovations.
Cavaliere G., Taylor A.M.R. (2009). Bootstrap M unit root tests. ECONOMETRIC REVIEWS, 28, 393-421 [10.1080/07474930802467167].
Bootstrap M unit root tests
CAVALIERE, GIUSEPPE;
2009
Abstract
In this article we propose wild bootstrap implementations of the local generalized least squares (GLS) de-trended M and ADF unit root tests of Stock (1999), Ng and Perron (2001), and Elliott et al. (1996), respectively. The bootstrap statistics are shown to replicate the first order asymptotic distributions of the original statistics, while numerical evidence suggests that the bootstrap tests perform well in small samples. A recolored version of our bootstrap is also proposed which can further improve upon the finite sample size properties of the procedure when the shocks are serially correlated, in particular ameliorating the significant under-size seen in the M tests against processes with autoregressive or moving average roots close to −1. The wild bootstrap is used because it has the desirable property of preserving in the resampled data the pattern of heteroskedasticity present in the original shocks, thereby allowing for cases where the series under test is driven by martingale difference innovations.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.