In recent years, numerous studies have explored the use of machine learning algorithms for supporting applications in social and clinical psychology. In particular, there is an increasing prevalence of smartphone-based techniques for collecting data through embedded sensors and efficient in-situ questionnaires. Models are then built to explore the patterns between these data types. In this paper, we study the application of machine learning for the task of predicting mental states of adverse valence, based on the Photographic Affect Meter data. We present a technique for daily aggregation, which is designed to detect significant negative events. A variety of features is used as input, including GPS-based metrics and features assessing social interactions, sleep and phone usage. Experimental evidence is presented, which suggests that machine learning algorithms could successfully be employed for such a prediction task.

Mikelsons, G.a.M. (2019). Evaluating machine learning algorithms for prediction of the adverse valence index based on the photographic affect meter [10.1145/3325426.3329948].

Evaluating machine learning algorithms for prediction of the adverse valence index based on the photographic affect meter

Musolesi, M;
2019

Abstract

In recent years, numerous studies have explored the use of machine learning algorithms for supporting applications in social and clinical psychology. In particular, there is an increasing prevalence of smartphone-based techniques for collecting data through embedded sensors and efficient in-situ questionnaires. Models are then built to explore the patterns between these data types. In this paper, we study the application of machine learning for the task of predicting mental states of adverse valence, based on the Photographic Affect Meter data. We present a technique for daily aggregation, which is designed to detect significant negative events. A variety of features is used as input, including GPS-based metrics and features assessing social interactions, sleep and phone usage. Experimental evidence is presented, which suggests that machine learning algorithms could successfully be employed for such a prediction task.
2019
MCSS 2019 - Proceedings of the 5th ACM Workshop on Mobile Systems for Computational Social Science, co-located with MobiSys 2019
5
10
Mikelsons, G.a.M. (2019). Evaluating machine learning algorithms for prediction of the adverse valence index based on the photographic affect meter [10.1145/3325426.3329948].
Mikelsons, G and Mehrotra, A and Musolesi, M and Shadbolt, N
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/734929
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact