Let $(X_n)$ be a sequence of random variables (with values in a separable metric space) and $(N_n)$ a sequence of random indices. Conditions for $X_N_n$ to converge stably (in particular, in distribution) are provided. Some examples, where such conditions work but those already existing fail, are given as well.

P. Berti, I. Crimaldi, L. Pratelli, P. Rigo (2014). An Anscombe-type theorem. JOURNAL OF MATHEMATICAL SCIENCES, 196, 15-22 [10.1007/s10958-013-1629-6].

An Anscombe-type theorem

P. Rigo
2014

Abstract

Let $(X_n)$ be a sequence of random variables (with values in a separable metric space) and $(N_n)$ a sequence of random indices. Conditions for $X_N_n$ to converge stably (in particular, in distribution) are provided. Some examples, where such conditions work but those already existing fail, are given as well.
2014
P. Berti, I. Crimaldi, L. Pratelli, P. Rigo (2014). An Anscombe-type theorem. JOURNAL OF MATHEMATICAL SCIENCES, 196, 15-22 [10.1007/s10958-013-1629-6].
P. Berti; I. Crimaldi; L. Pratelli; P. Rigo
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/734927
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact