In this paper, we study the performance improvement that it is possible to obtain combining classifiers based on different notions (each trained using a different physicochemical property of amino-acids). This multi-classifier has been tested in three problems: HIV-protease; recognition of T-cell epitopes; predictive vaccinology. We propose a multi-classifier that combines a classifier that approaches the problem as a two-class pattern recognition problem and a method based on a one-class classifier. Several classifiers combined with the “sum rule” enables us to obtain an improvement performance over the best results previously published in the literature.

Lumini, A., Nanni, L. (2009). Machine learning multi-classifiers for peptide classification. NEURAL COMPUTING & APPLICATIONS, 18, 185-192 [10.1007/s00521-007-0170-2].

Machine learning multi-classifiers for peptide classification

LUMINI, ALESSANDRA;NANNI, LORIS
2009

Abstract

In this paper, we study the performance improvement that it is possible to obtain combining classifiers based on different notions (each trained using a different physicochemical property of amino-acids). This multi-classifier has been tested in three problems: HIV-protease; recognition of T-cell epitopes; predictive vaccinology. We propose a multi-classifier that combines a classifier that approaches the problem as a two-class pattern recognition problem and a method based on a one-class classifier. Several classifiers combined with the “sum rule” enables us to obtain an improvement performance over the best results previously published in the literature.
2009
Lumini, A., Nanni, L. (2009). Machine learning multi-classifiers for peptide classification. NEURAL COMPUTING & APPLICATIONS, 18, 185-192 [10.1007/s00521-007-0170-2].
Lumini, Alessandra; Nanni, Loris
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/73480
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact