In this work the behaviour of hybrid multi-storey buildings braced with Cross-Laminated-Timber (CLT) cores and shear-walls is studied based on numerical analyses. Two procedures for calibrating numerical models are adopted and compared to test data and application of provisions in current design codes. The paper presents calibration of parameters characterising connections used to interconnect adjacent CLT panels and building cores, and attach shear-walls to foundations or floors that act as eleveted diaphragms. Different case studies are analysed comparing the structural responses of buildings assembled with "standard? fastening systems (e.g. hold-downs and angle-brackets), or using a special X-RAD connection system. The aim is to characterize behaviours of connections in ways that reflect how they perform as parts of completed multi-storey superstructure systems, rather than when isolated from such systems or their substructures. Results from various analyses are presented in terms of principal elastic periods, base shear forces, and uplift forces in buildings. Discussion addresses key issues associated with engineering analysis and design of buildings having around five or more storeys.
Polastri A., Loss C., Pozza L., Smith I. (2016). CLT buildings laterally braced with core and perimeter walls. Vienna University of Technology.
CLT buildings laterally braced with core and perimeter walls
Pozza L.;
2016
Abstract
In this work the behaviour of hybrid multi-storey buildings braced with Cross-Laminated-Timber (CLT) cores and shear-walls is studied based on numerical analyses. Two procedures for calibrating numerical models are adopted and compared to test data and application of provisions in current design codes. The paper presents calibration of parameters characterising connections used to interconnect adjacent CLT panels and building cores, and attach shear-walls to foundations or floors that act as eleveted diaphragms. Different case studies are analysed comparing the structural responses of buildings assembled with "standard? fastening systems (e.g. hold-downs and angle-brackets), or using a special X-RAD connection system. The aim is to characterize behaviours of connections in ways that reflect how they perform as parts of completed multi-storey superstructure systems, rather than when isolated from such systems or their substructures. Results from various analyses are presented in terms of principal elastic periods, base shear forces, and uplift forces in buildings. Discussion addresses key issues associated with engineering analysis and design of buildings having around five or more storeys.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.