Let $X=\X_t:0le tle 1$ be a centered Gaussian process with continuous paths, and $I_n=raca_n2,int_0^1 t^n-1 (X_1^2-X_t^2),dt$ where the $a_n$ are suitable constants. Fix $etain (0,1)$, $c_n>0$ and $c>0$ and denote by $N_c$ the centered Gaussian kernel with (random) variance $cX_1^2$. Under an Holder condition on the covariance function of $X$, there is a constant $k(eta)$ such that egingather* ormPigl(sqrtc_n,I_nincdotigr)-Eigl[N_c(cdot)igr],le k(eta),Bigl(raca_nn^1+alphaBigr)^eta+racabsc_n-ccquad extfor all nge 1, endgather* where $ ormcdot$ is total variation distance and $alpha$ the Holder exponent of the covariance function. Moreover, if $raca_nn^1+alpha ightarrow 0$ and $c_n ightarrow c$, then $sqrtc_n,I_n$ converges $ ormcdot$-stably to $N_c$, in the sense that egingather* ormP_Figl(sqrtc_n,I_nincdotigr)-E_Figl[N_c(cdot)igr], ightarrow 0 endgather* for every measurable $F$ with $P(F)>0$. In particular, such results apply to $X=$ fractional Brownian motion. In that case, they strictly improve the existing results in citeNNP16 and provide an essentially optimal rate of convergence.
Pratelli Luca, Rigo Pietro (2019). Total variation bounds for Gaussian functionals. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 129(7), 2231-2248 [10.1016/j.spa.2018.07.005].
Total variation bounds for Gaussian functionals
Rigo Pietro
2019
Abstract
Let $X=\X_t:0le tle 1$ be a centered Gaussian process with continuous paths, and $I_n=raca_n2,int_0^1 t^n-1 (X_1^2-X_t^2),dt$ where the $a_n$ are suitable constants. Fix $etain (0,1)$, $c_n>0$ and $c>0$ and denote by $N_c$ the centered Gaussian kernel with (random) variance $cX_1^2$. Under an Holder condition on the covariance function of $X$, there is a constant $k(eta)$ such that egingather* ormPigl(sqrtc_n,I_nincdotigr)-Eigl[N_c(cdot)igr],le k(eta),Bigl(raca_nn^1+alphaBigr)^eta+racabsc_n-ccquad extfor all nge 1, endgather* where $ ormcdot$ is total variation distance and $alpha$ the Holder exponent of the covariance function. Moreover, if $raca_nn^1+alpha ightarrow 0$ and $c_n ightarrow c$, then $sqrtc_n,I_n$ converges $ ormcdot$-stably to $N_c$, in the sense that egingather* ormP_Figl(sqrtc_n,I_nincdotigr)-E_Figl[N_c(cdot)igr], ightarrow 0 endgather* for every measurable $F$ with $P(F)>0$. In particular, such results apply to $X=$ fractional Brownian motion. In that case, they strictly improve the existing results in citeNNP16 and provide an essentially optimal rate of convergence.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.