Let $X=\X_t:0le tle 1$ be a centered Gaussian process with continuous paths, and $I_n=raca_n2,int_0^1 t^n-1 (X_1^2-X_t^2),dt$ where the $a_n$ are suitable constants. Fix $etain (0,1)$, $c_n>0$ and $c>0$ and denote by $N_c$ the centered Gaussian kernel with (random) variance $cX_1^2$. Under an Holder condition on the covariance function of $X$, there is a constant $k(eta)$ such that egingather* ormPigl(sqrtc_n,I_nincdotigr)-Eigl[N_c(cdot)igr],le k(eta),Bigl(raca_nn^1+alphaBigr)^eta+racabsc_n-ccquad extfor all nge 1, endgather* where $ ormcdot$ is total variation distance and $alpha$ the Holder exponent of the covariance function. Moreover, if $raca_nn^1+alpha ightarrow 0$ and $c_n ightarrow c$, then $sqrtc_n,I_n$ converges $ ormcdot$-stably to $N_c$, in the sense that egingather* ormP_Figl(sqrtc_n,I_nincdotigr)-E_Figl[N_c(cdot)igr], ightarrow 0 endgather* for every measurable $F$ with $P(F)>0$. In particular, such results apply to $X=$ fractional Brownian motion. In that case, they strictly improve the existing results in citeNNP16 and provide an essentially optimal rate of convergence.

Pratelli Luca, Rigo Pietro (2019). Total variation bounds for Gaussian functionals. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 129(7), 2231-2248 [10.1016/j.spa.2018.07.005].

Total variation bounds for Gaussian functionals

Rigo Pietro
2019

Abstract

Let $X=\X_t:0le tle 1$ be a centered Gaussian process with continuous paths, and $I_n=raca_n2,int_0^1 t^n-1 (X_1^2-X_t^2),dt$ where the $a_n$ are suitable constants. Fix $etain (0,1)$, $c_n>0$ and $c>0$ and denote by $N_c$ the centered Gaussian kernel with (random) variance $cX_1^2$. Under an Holder condition on the covariance function of $X$, there is a constant $k(eta)$ such that egingather* ormPigl(sqrtc_n,I_nincdotigr)-Eigl[N_c(cdot)igr],le k(eta),Bigl(raca_nn^1+alphaBigr)^eta+racabsc_n-ccquad extfor all nge 1, endgather* where $ ormcdot$ is total variation distance and $alpha$ the Holder exponent of the covariance function. Moreover, if $raca_nn^1+alpha ightarrow 0$ and $c_n ightarrow c$, then $sqrtc_n,I_n$ converges $ ormcdot$-stably to $N_c$, in the sense that egingather* ormP_Figl(sqrtc_n,I_nincdotigr)-E_Figl[N_c(cdot)igr], ightarrow 0 endgather* for every measurable $F$ with $P(F)>0$. In particular, such results apply to $X=$ fractional Brownian motion. In that case, they strictly improve the existing results in citeNNP16 and provide an essentially optimal rate of convergence.
2019
Pratelli Luca, Rigo Pietro (2019). Total variation bounds for Gaussian functionals. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 129(7), 2231-2248 [10.1016/j.spa.2018.07.005].
Pratelli Luca; Rigo Pietro
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/733949
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact