Let $mu_n$ be a probability measure on the Borel $sigma$-field on $D[0,1]$ with respect to Skorohod distance, $ngeq 0$. Necessary and sufficient conditions for the following statement are provided. On some probability space, there are $D[0,1]$-valued random variables $X_n$ such that $X_nsimmu_n$ for all $ngeq 0$ and $ ormX_n-X_0 ightarrow 0$ in probability, where $ ormcdot$ is the sup-norm. Such conditions do not require $mu_0$ separable under $ ormcdot$. Applications to exchangeable empirical processes and to pure jump processes are given as well.

A Skorohod representation theorem for uniform distance

Rigo P.
2011

Abstract

Let $mu_n$ be a probability measure on the Borel $sigma$-field on $D[0,1]$ with respect to Skorohod distance, $ngeq 0$. Necessary and sufficient conditions for the following statement are provided. On some probability space, there are $D[0,1]$-valued random variables $X_n$ such that $X_nsimmu_n$ for all $ngeq 0$ and $ ormX_n-X_0 ightarrow 0$ in probability, where $ ormcdot$ is the sup-norm. Such conditions do not require $mu_0$ separable under $ ormcdot$. Applications to exchangeable empirical processes and to pure jump processes are given as well.
Berti P.; Pratelli L.; Rigo P.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/733375
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact