For a general open set, we characterize the compactness of the embedding for the homogeneous Sobolev space D1,p → Lq in 0 terms of the summability of its torsion function. In particular, for 1 ≤ q < p we obtain that the embedding is continuous if and only if it is compact. The proofs crucially exploit a torsional Hardy inequality that we investigate in detail.

Brasco L, Ruffini B (2017). Compact Sobolev embeddings and torsion functions. ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE, 34(4), 817-843 [10.1016/j.anihpc.2016.05.005].

Compact Sobolev embeddings and torsion functions

Ruffini B
2017

Abstract

For a general open set, we characterize the compactness of the embedding for the homogeneous Sobolev space D1,p → Lq in 0 terms of the summability of its torsion function. In particular, for 1 ≤ q < p we obtain that the embedding is continuous if and only if it is compact. The proofs crucially exploit a torsional Hardy inequality that we investigate in detail.
2017
Brasco L, Ruffini B (2017). Compact Sobolev embeddings and torsion functions. ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE, 34(4), 817-843 [10.1016/j.anihpc.2016.05.005].
Brasco L; Ruffini B
File in questo prodotto:
File Dimensione Formato  
braruf.pdf

accesso aperto

Tipo: Postprint / Author's Accepted Manuscript (AAM) - versione accettata per la pubblicazione dopo la peer-review
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 1.08 MB
Formato Adobe PDF
1.08 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/733159
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact