We consider the Schrödinger operator −∆ + V (x) on H01(Ω), where Ω is a given domain of R . Our goal is to study some optimization problems where an optimal potential V has to be determined in some suitable admissible classes and for some suitable optimization criteria, like the energy or the Dirichlet eigenvalues.
Buttazzo G, Gerolin A, Ruffini B, Velichkov B (2014). Spectral Optimization Problems for Schroedinger Operators. JOURNAL DE L'ÉCOLE POLYTECHNIQUE. MATHÉMATIQUES, 1, 71-100 [10.5802/jep.4].
Spectral Optimization Problems for Schroedinger Operators
Ruffini B;
2014
Abstract
We consider the Schrödinger operator −∆ + V (x) on H01(Ω), where Ω is a given domain of R . Our goal is to study some optimization problems where an optimal potential V has to be determined in some suitable admissible classes and for some suitable optimization criteria, like the energy or the Dirichlet eigenvalues.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
bugeruve.pdf
accesso aperto
Descrizione: Articolo in rivista
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non opere derivate (CCBYND)
Dimensione
899.4 kB
Formato
Adobe PDF
|
899.4 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.