We consider the Schrödinger operator −∆ + V (x) on H01(Ω), where Ω is a given domain of R . Our goal is to study some optimization problems where an optimal potential V has to be determined in some suitable admissible classes and for some suitable optimization criteria, like the energy or the Dirichlet eigenvalues.

Buttazzo G, Gerolin A, Ruffini B, Velichkov B (2014). Spectral Optimization Problems for Schroedinger Operators. JOURNAL DE L'ÉCOLE POLYTECHNIQUE. MATHÉMATIQUES, 1, 71-100 [10.5802/jep.4].

Spectral Optimization Problems for Schroedinger Operators

Ruffini B;
2014

Abstract

We consider the Schrödinger operator −∆ + V (x) on H01(Ω), where Ω is a given domain of R . Our goal is to study some optimization problems where an optimal potential V has to be determined in some suitable admissible classes and for some suitable optimization criteria, like the energy or the Dirichlet eigenvalues.
2014
Buttazzo G, Gerolin A, Ruffini B, Velichkov B (2014). Spectral Optimization Problems for Schroedinger Operators. JOURNAL DE L'ÉCOLE POLYTECHNIQUE. MATHÉMATIQUES, 1, 71-100 [10.5802/jep.4].
Buttazzo G; Gerolin A; Ruffini B; Velichkov B
File in questo prodotto:
File Dimensione Formato  
bugeruve.pdf

accesso aperto

Descrizione: Articolo in rivista
Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non opere derivate (CCBYND)
Dimensione 899.4 kB
Formato Adobe PDF
899.4 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/733149
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact