We generalise Ehrhard and Regnier’s Taylor expansion from pure to probabilistic λ-terms. We prove that the Taylor expansion is adequate when seen as a way to give semantics to probabilistic λ-terms, and that there is a precise correspondence with probabilistic Böhm trees, as introduced by the second author. We prove this adequacy through notions of probabilistic resource terms and explicit Taylor expansion.

Dal Lago U., Leventis T. (2019). On the Taylor expansion of probabilistic λ-terms. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing [10.4230/LIPIcs.FSCD.2019.13].

On the Taylor expansion of probabilistic λ-terms

Dal Lago U.
;
Leventis T.
2019

Abstract

We generalise Ehrhard and Regnier’s Taylor expansion from pure to probabilistic λ-terms. We prove that the Taylor expansion is adequate when seen as a way to give semantics to probabilistic λ-terms, and that there is a precise correspondence with probabilistic Böhm trees, as introduced by the second author. We prove this adequacy through notions of probabilistic resource terms and explicit Taylor expansion.
2019
4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)
1
16
Dal Lago U., Leventis T. (2019). On the Taylor expansion of probabilistic λ-terms. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing [10.4230/LIPIcs.FSCD.2019.13].
Dal Lago U.; Leventis T.
File in questo prodotto:
File Dimensione Formato  
fscd2019.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 614.71 kB
Formato Adobe PDF
614.71 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/732380
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact