We study string inspired two-field models of large-field inflation based on axion monodromy in the presence of an interacting heavier modulus. This class of models has enough structure to approximate at least part of the backreaction effects known in full string theory, such as kinetic mixing with the axion, and flattening of the scalar potential. Yet, it is simple enough to fully describe the structure of higher-point curvature perturbation interactions driven by the adjusting modulus backreaction dynamics. We find that the presence of the heavy modulus can be described via two equivalent effective field theories, both of which can incorporate reductions of the speed of sound. Hence, the presence of heavier moduli in axion monodromy inflation constructions will necessarily generate some amount of non-Gaussianity accompanied by changes to n(s) and r beyond what results from just from the well-known adiabatic flattening backreaction.
Pedro, F.G., Westphal, A. (2020). Flattened axion monodromy beyond two derivatives. PHYSICAL REVIEW D, 101(4), 1-15 [10.1103/PhysRevD.101.043501].
Flattened axion monodromy beyond two derivatives
Pedro, Francisco G.
;
2020
Abstract
We study string inspired two-field models of large-field inflation based on axion monodromy in the presence of an interacting heavier modulus. This class of models has enough structure to approximate at least part of the backreaction effects known in full string theory, such as kinetic mixing with the axion, and flattening of the scalar potential. Yet, it is simple enough to fully describe the structure of higher-point curvature perturbation interactions driven by the adjusting modulus backreaction dynamics. We find that the presence of the heavy modulus can be described via two equivalent effective field theories, both of which can incorporate reductions of the speed of sound. Hence, the presence of heavier moduli in axion monodromy inflation constructions will necessarily generate some amount of non-Gaussianity accompanied by changes to n(s) and r beyond what results from just from the well-known adiabatic flattening backreaction.File | Dimensione | Formato | |
---|---|---|---|
PhysRevD.101.043501.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
651.13 kB
Formato
Adobe PDF
|
651.13 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.