In this paper a multi-scale version of the Sherrington and Kirkpatrick model is introduced and studied. The pressure per particle in the thermodynamical limit is proved to obey a variational principle of Parisi type. The result is achieved by means of lower and upper bounds. The lower bound is obtained with a Ruelle cascade using the interpolation technique, while the upper bound exploits factorisation properties of the equilibrium measure and the synchronisation technique.

Contucci, P., Mingione, E. (2019). A Multi-scale Spin-Glass Mean-Field Model. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 368(3), 1323-1344 [10.1007/s00220-019-03308-8].

A Multi-scale Spin-Glass Mean-Field Model

Contucci, Pierluigi
;
Mingione, Emanuele
2019

Abstract

In this paper a multi-scale version of the Sherrington and Kirkpatrick model is introduced and studied. The pressure per particle in the thermodynamical limit is proved to obey a variational principle of Parisi type. The result is achieved by means of lower and upper bounds. The lower bound is obtained with a Ruelle cascade using the interpolation technique, while the upper bound exploits factorisation properties of the equilibrium measure and the synchronisation technique.
2019
Contucci, P., Mingione, E. (2019). A Multi-scale Spin-Glass Mean-Field Model. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 368(3), 1323-1344 [10.1007/s00220-019-03308-8].
Contucci, Pierluigi; Mingione, Emanuele
File in questo prodotto:
File Dimensione Formato  
CMP368-2019.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 384.38 kB
Formato Adobe PDF
384.38 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/732135
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact